
1 
 

 

Final Report 
 

 

 

Date of Report:    October 5, 2018 

 

Contract Number:  DTPH5614HCAP04 

 

Prepared for: Dr. James Merritt, PHMSA-DOT 

 

Project Title: Optimized Diagnosis and Prognosis for Impingement Failure of PA and PE Piping 

Materials 

 

Prepared by:  University of Colorado-Denver, Arizona State University 

 

Contact Information:  Dr. Yiming Deng and Dr. Yongming Liu 

 

Project ending date:  September 29, 2018 

  



2 
 

 

1. Abstract and Introduction…………………………………………………………………….... 4 

2. Chapter 1: Experimental investigation of basic material properties and design and 

validation of the Bayesian Network Model………………………………………………...……8 
 

2.1 Experimental investigation of basic material properties 

2.1.1 Microstructure Characterization 

2.1.2 Volume fraction analysis 

2.1.3 Grain size determination 

2.1.4 Chemical composition 

2.1.5 Hardness 

2.1.6 Tensile Test 

2.2 Bayesian Network Model 

2.2.1 Model formulation 

2.2.2 Prediction of Yield Strength 

2.2.3 Node co-dependency illustration 

2.2.4 Modification of Regression Coefficients 

2.2.5 Node Sensitivity 

 

3. Chapter 2: Statistical models for prediction of manufacturing process parameters and 

comparative study……………………………………………………………….………………32 

3.1 Model prediction with individual models 

3.2 Impact of model parameter variation on the prediction behavior 

 

4. Chapter 3: Fatigue study of pipe steel………………………………………………...………..41 

4.1 Model prediction with individual models 

4.2 Analysis of the crack growth rate 

 

5. Chapter 4: 3-D Stochastic reconstruction model…………………………...…………………48 

5.1 Demonstration of 3D stochastic reconstruction for Pipe 45 

6. Summary and conclusions………………………………………………………………………50 

7. Future scope………………………………………………………………………………..……51 

7.1 Bayesian network validation, coefficients modification, sensitivity analysis for UTS  

7.2 Analyzing Impact of Training data and model selection for the datasets 

7.3 Texture study of the Fatigue tested samples 

8. References……………………………………………………………………………………..…52 

 

 



3 
 

Acknowledgements 

The work is sponsored by DOT-PHMSA CAAP program (Program Officer: Joshua Arnold， 

James Prothro, and James Merritt) and the financial support is greatly appreciated. Technical 

inputs from GTI research experts, Ernest Lever and Daniel Ersoy, is highly appreciated as well 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

ABSTRACT 

 

The pipeline infrastructure is vital to the economic welfare of the United States. The pipeline systems 

which have been laid down for decades such as those installed in the early 1900’s are still in use, 

however, a reliable database reporting the mechanical properties, and information about manufacturing 

and installation is often unavailable, which raises a concern for their safety and integrity. Therefore, 

an accurate estimation of the pipe material properties is crucial for the integrity and risk assessment of 

aging pipeline infrastructure systems. The various gaps that thus exist in pipe properties measurement 

create a desire for development of novel methods and techniques to better characterize the pipe material 

properties, which provides the impetus for the present research work. The main objective of this project 

work is the design of a Bayesian Network integrated model for probabilistic strength prediction by 

fusing information from the multimodal diagnosis of the pipe material properties. A multimodal 

diagnosis is performed by assessing the mechanical property variation within the pipe in terms of 

material property measurements, such as microstructure, composition, hardness etc. through 

experimental analysis, which are then integrated with the Bayesian network model that uses a Markov 

chain Monte Carlo (MCMC) algorithm. Simulation and prototype testing are carried out for model 

verification, validation and demonstration. Another major component of the study is the development 

of a novel Magnetic Barkhausen Noise (MBN) signal is which is sensitive to the multi-properties of 

ferromagnetic materials such as grain size, composition and thus aids in material property 

characterization of the pipes. The relationship between the number of turns of pick-up coils and MBN 

signals in both time-domain and frequency domain is studied for the sensor coil optimization and the 

results are validated using a Monte Carlo method. The next aspect of the research dwells into the 

fatigue properties of the pipe specimen to provide a holistic measure of performance of a material in 

service by studying the variation in the crack growth rate (da/dN) along the pipe wall thickness 

direction and its relation to the microstructure, material constants for the crack growth have been 

reported. Next, some well-known statistical models have been employed for the prediction of process 

parameters of the manufacturing process such as the TMCP to obtain the desired material properties. 

Lastly, a physics based 3D stochastic reconstruction model is proposed as a part of the scope for future 

work to obtain a direct and non-destructive way to obtain the elastic and plastic properties. Discussions 

are provided on the observations and future work. 
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INTRODUCTION 

 

The present system of natural gas pipelines in the United States comprises of a network of gathering 

and transmission lines with more than 210 pipeline systems laid across 305000 miles [1]. Pipeline 

infrastructure forms a vital aspect in improving the U.S. economy and standard of living. Most of the 

pipelines were installed in the early 1900’s and do not have a widely available database on 

manufacturing & installation, inspection as well as for the mechanical properties. Testing for the aging 

pipe strength and toughness estimation without interrupting the transmission and operations thus 

becomes important. The state state-of-the-art techniques for the prediction of pipe strength and other 

properties often involve destructive testing, those that are non-destructive tend to focus on the single 

modality deterministic estimation of pipe strength and do not account for inhomogeneity and 

uncertainties, which form the key gaps existing methods of mechanical properties estimation. The 

motivation and the main focus of this research work is to develop a methodology to aid in the accurate 

prediction of pipe strength and consequently the maximum allowable operating pressure. This is a 
collaborative study by Arizona State University (ASU) and Michigan State University (MSU).  

Arizona State University (ASU) focuses on the Bayesian network model formulation and experimental 

testing for the material properties through SEM, EDS, EBSD, Hardness Tester, Tensile/ Fatigue test 

machines etc. The study proposes a probabilistic approach with rigorous uncertainty quantification, 

based on multimodal diagnosis to infer the strength of aging pipeline materials. The methodology 

involves using Bayesian network as a general information fusion framework, to derive the statistical 

inference and incorporate the multimodal measurements such as microstructure, chemical composition, 

and acoustic properties. The research work also looks into exploiting the already existing database 

using some popular statistical models to predict the process parameters of the manufacturing process 

such as the TMCP to obtain the desired material properties. Such methods are expected to aid in 

reducing the complexity of the problems and save some computational costs, improving the quality 

standards at the same time. Next, the fatigue crack growth behavior of pipe steels is investigated to 

assess the variation in the crack growth parameters through the pipe wall thickness which forms the 
final part of the report. The objectives of the present research from ASU are: 

a. Development of a novel Bayesian network tool for information fusion from multimodality 

diagnosis results for the probabilistic pipe strength and toughness estimation (Chapter 1) 

- Experimental testing and data analysis of material mechanical property variation with respect 

to basic chemical and metallurgical properties. 

- Development of an information fusion methodology based on Bayesian network inference 

using multimodality diagnosis and demonstration study using representative pipe specimens.  

b. Comparative study of statistical models for manufacturing properties prediction 

(Chapter 2) 

- Prediction using individual models of multivariate linear regression, ML-KNN (multi-label k-

nearest neighbor) and GP (Gaussian Process) model. 

- Analyzing the effect of model parameter variation on the prediction efficiency. 

- Demonstration of a model selection procedure depending on the length and quality of the 

dataset.  

c. Investigation of variation in the fatigue behavior of the steels through the thickness of the 

pipe sample (Chapter 3) 

- Estimation of crack growth characteristics of the pipe samples in relation to the microstructure.  
- Investigation of variation in fatigue crack growth parameters through the pipe thickness. 
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As an expansion and future scope to the research work, Physics based 3D stochastic reconstruction 

model is proposed. This will aim to provide us with nondestructive means of estimating the 

macroscopic properties; transport, electromagnetic, and mechanical etc. This integrated computational 

framework will be independent of the data volume, saving time and providing with sound confidence 

bounds.  

MSU focuses on experimental testing and data analysis to understand the chemical, microstructure of 

the pipe steel materials through measurement of materials’ mechanical, elastic and micromagnetic 

properties, and prototyping for nonlinear and inhomogeneous acoustic and micro-electromagnetic 

properties of pipe material. The study employs a multi-modality approach to correlate material 

mechanical property, chemical properties, metallurgical properties, acoustic and micro-

electromagnetic properties. A high-resolution scanning system that capable of imaging different 

defect profiles using both amplitude and phase information of the reflected signals has been 

developed and optimized. The method was tested on various datasets with successful implementation 

of signal recovery using numerical optimization. A multi-modal correlation analysis between 

mechanical and electromagnetic properties is studied as a potential in-situ & ex-situ application of 

the system. The results show that the developed system provides good correlation, which 

demonstrates this fast, non-contact method as a promising alternate modality. A Magnetic 

Barkhausen Noise(MBN) system has been developed to characterize the microstructure of the 

sample. Sensor optimization has also been studied. The coils with the different number of turns have 

been compared for sensitivity. For the optimization for the magnetic core, NSGA III has been 

introduced and applied to design the sensor with small size, high magnetic field, and suit for different 

diameter pipelines. MBN are investigated for various mild steels with different microstructure such 

as grain sizes and carbon contents. With different heat treatment, the samples with different hardness 

have also been evaluated.  

 The objectives of the present research from MSU are: 

a. Development and optimization of a Microwave Imaging system (Chapter 3) 

- Multi-channel sensor design and prototyping 

- Rapid data acquisition method and Compressive Sensing  method to improve the accuracy 

and speed of the scanning 

- Experiment and simulation of the multi-modality approach to estimate the material’s 

mechanical properties using its electromagnetic properties 

b. Development and optimization of a Magnetic Barkhausen Noise system for the 

material’s microstructure characterization (Chapter 2) 

- Magnetic Barkhausen Noise system design and prototyping  

- Sensor optimization using NSGA method  

- Experiment and simulation study of the MBN signal on samples with different 

microstructures  

Estimation and prediction of the materials’ properties such as grain size, carbon content and hardness 
using MBN signal 
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CHAPTER 1: BAYESIAN NETWORK TOOL FOR INFORMATION FUSION FROM 

MULTIMODALITY DIAGNOSIS RESULTS FOR THE PROBABILISTIC PIPE STRENGTH 

ESTIMATION 

 

Introduction 

In the present work, a methodology for better prediction of mechanical properties for in-situ 

Natural gas pipeline systems has been proposed. The current in-line inspection techniques such as 

Smart PIGs (Pipeline Inspection Gauge) use non-destructive evaluation methods such as magnetic, 

ultrasonic etc. [2] for assessing the condition of a pipeline to identify defects in the form of 

mechanical dents, corrosion, cracks etc. However, in order to ensure correct responsiveness of the 

pipe to these defects, to be able to characterize the pipeline for the remaining life and the pressure 

rating, it is necessary to have a good estimate of the mechanical properties such as yield and tensile 

strength. As per the American Petroleum Institute (API) standards, the maximum allowable 

operating pressure (MAOP) can be directly related to the minimum yield strength, and the ratio 

specification of yield to tensile strength [3], whereas, many studies can correlate the shape and size 

of the defects to the remaining useful life of the pipelines [4]. In the present day, about 63 percent 

of these systems cannot be inspected via conventional PIGs due to them being either too old, or 

with turns and twists not allowing PIGs to operate in them [5]. A reliable estimate of the strength 

and remaining life of the pipelines is therefore often difficult to obtain. The techniques for 

estimation of pipe strength and toughness, such as the hardness testers, Automated Ball Indenter, 

[6] and others, rely on surface-based measurement of hardness and stress-strain measurements etc. 

Unlike the hardness-based strength estimation method, no ASME (American Society of 

Mechanical Engineers) standards exist for the ABI measurement method for pipe strength and 

toughness estimation [9]. Moreover, the Nondestructive evaluation (NDE) techniques such as 

acoustic [10], micro-magnetic [11], acoustic emission [12] etc. predict the mechanical properties 

based on single modality measurements[13]. The magnetic flux leakage technique, eddy current 

inspection, and ultrasound inspection are all based on analysis of the distorted signal pattern around 

the defect and are limited by the pipe wall thickness and the flaw size [14]. Although some NDE 

techniques like Magnetic Flux Leakage have shown the capability to be able to correlate with 

hardness, and correspondingly with strengths, there is a large uncertainty in such type of estimation 

which, on one hand, may work well for some systems and not for others [15]. The above-listed 

techniques predict the strength based on the assumption that the material is homogenous, and do 

not provide a holistic measure of the properties. For the pipeline systems, a number of factors 

could contribute to the presence of material inhomogeneities, such as the manufacturing process 

or structure changes due to strain aging may due to the long-term operation of pipelines [16]. This 

may initiate a phenomenon such as decarburization, resulting in a varied chemical composition 

and deterioration in mechanical properties that would finally cause surface properties to be 

different from the bulk ones [9]. Uncertainties in the system are another gap in the prediction of 

the mechanical properties[17]. These can manifest in terms of material properties, pipe geometries, 

manufacturing process, operational conditions, etc. Therefore, it is well understood that single 

modality analysis, not accounting for material inhomogeneity and the various uncertainties are the 

major gaps in the estimation of mechanical properties from the existing methods [9] [18]. 

Therefore, the focus of this task is on the rigorous information fusion framework with various 

identified features from multimodality diagnosis results as all of them contain certain amount of 
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valuable information which will be integrated here to obtain a more accurate prediction of pipe 

strength. The experimental procedure will consist of laboratory testing to investigate the material 

properties through the thickness of the pipe, namely chemical composition through EDS, 

microstructure through Optical microscope/ SEM, hardness through Vickers Hardness Tester and 

the tensile and fatigue properties through the Servo-hydraulic testing machine for the different 

grades of pipe steel, to specify them as the input parameters for the Bayesian Network model for 

prediction and validation of mechanical properties. This model will be based on an updating 

principle based on Bayes' theorem. This provides a statistical rigorous way to infer posterior 

distribution (i.e., fused or updated information) using prior distribution (i.e., existing information 

or experiences) and likelihood function (i.e., new measurements). Let M  be a Bayesian model 

class and ( , )p M   denote the prior distribution of the parameter   in the model. Then, for a new 

observed evidence or system response 'x  , the posterior distribution, ( , )q M  is given as:   

    
( , ) ( ' | ,M)p( ,M)q M p x           (1.2) 

Here, ( ' | ,M)p x   is referred to as likelihood function of . The updated probability of each model 

in M  is given by the posterior PDF when the new information 'x  is incorporated[26]. The present 

model also includes an error term e which is a variable with 0 mean normal distribution which can 

be denoted as (0, )ee N   and is used to define the relationship between the model M and the 

updating variable 'x for updating the parameter,  , giving us with the following relation: 

' Mx e   

The above shown information fusion is for a single modality/source of information. One major task 

in the study is to extend this idea to a generalized Bayesian network for multimodality diagnosis 

information fusion. A Bayesian network is a probability-based graphic tool to infer systems with 

stochastic parameters. A schematic of the proposed network is illustrated in Fig. 7 for the pipe 

strength and toughness estimation.   

 

 

Fig. 1 Schematic of the proposed Bayesian Network model 
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2.1 Investigation and analysis of basic material properties: 

Setup and Procedure 

Microstructure Characterization: 
 

For the experimental analysis, a few samples were carved out along the thickness direction 10 um2 

cross-section units and polished as per the guidelines for metallographic inspection. Etching was 

done using 2% Nital solution, holding the samples for 10-20 seconds to reveal the grain and phase 

structures. The samples were viewed under Optical/Scanning Electron Microscope (SEM). Grain 

size of ferrite was studied along with the volume fraction of the constituent phases with the use of 

a commercially available software ImageJ. 

Chemical composition analysis: 
 

The chemical composition of the specimen was studied through semi-quantitative Energy 

Dispersive Spectroscopy (EDS) in an Electron probe micro analyzer (EPMA).  Both point analysis 

and area analysis was carried out to determine the average composition across the phases. Polished 

and etched samples from microstructure analysis were used for composition testing. Fig.3 shows 

the spot analysis SEM image and spectrum. 

                  

a)                                        b) 

Fig. 2 Images of the EDS analysis: a) SEM image b) EDS Spectrum 

Hardness Test 
 

Hardness of the samples were examined with the Vickers Hardness tester, a tester for small area 

measurements [9]. 1kg small load was used for the purpose of testing as the samples were only 

1mm thick. Blocks of 10mm X 10mm X 1mm were used for the experiment. 

Tensile Test 
 

The stress-strain characteristics were studied through tensile tests of flat strip test samples carved 

out from the pipe in the hoop orientation (Fig.4 a, b) [7]. The samples were tested both with the 

use of a Tensile Stage machine (along layers) and Servo-Hydraulic MTS machine(Fig.4 c),  (bulk 

analysis), and were custom made in as per the dimensions allowed by the machines.  
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a)                                                b)          c) 

Fig. 3 a) Orientation of flat strip tensile specimen within the pipe sample [7], b) Dimensions of flat strip 

tensile specimen c) Servo Hydraulic MTS machine 

The experiments were repeated for different depths along the pipe wall thickness in order to 

examine their variation along the thickness. The thickness at different depths was measured using 

an Ultrasonic thickness gauge.  

Results from the experimental analysis  
 

Two samples from transmission pipelines were used in the present study belonging to the year of 

installation ranging from 1949 to1961. The pipe samples arrived with the installation year and Pipe 

grade information. The suspected grade and microstructure were deduced from the image analysis 

and year of installation information. 

Table 1: Pipe grades information 
 

Pipe 

Number 
Installation 

year 
Pipe 

grade 
Suspected 

grade 
Suspected microstructures 

45 (1) 1949 1525 X50 FERRITE - PEARLITE 

47 (2) 1964 1025 X60 FERRITE – PEARLITE 

44 (3)  - 1513 - - 

 

2.1.1 Microstructure 
 

The microstructure of the two pipe samples was studied through Secondary Electron Microscope 

and is reported in Fig. 5.  The microstructure was seen to be comprised to two phases, ferrite and 

pearlite, hence the likelihood model in the network takes into account effect of dual phase strength.   
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Fig. 4 Figure showing dual phase microstructure along the thickness direction, a), b) and c) are the images 

from successive depths of Pipe 45 and d), e) and f) are the images from successive depths of Pipe 47 

The figures from left to right correspond to the different depths (along the pipe wall direction) 

within a sample; and are only shown for three consecutive depths.  

Next are the micrographs from pipe 44, presented below: 

 

 

 

 

 

 

 

Fig.5.1 Optical images showing the microstructure of Pipe 44; a) Outer pipe wall surface b) Middle 

surface 1 c) Middle surface 2 d) Inner pipe wall surface 

 

 

 

 

 

 

 

 

a) b) c) 

e) f) d) 

b) Edge 2 a) Edge 1 d) Edge 4 

a) Edge 1 b) Edge 2 c) Edge 3 
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Fig.5.2 Optical images showing the microstructure of Pipe 32; a) Outer pipe wall surface b) Middle 

surface c) Inner pipe wall surface 

 

These pipe images from pipe 44 and pipe 32 depict a very obvious texture, potentially 

manufacturing process related. Fine grains can also be observed from both the pipe samples that 

would aid in studying the grain size and volume fraction. These are used to derive the volume 

fraction of the constituent phases as well as the grain size, as presented below. 

2.1.1 Volume fraction of the phases: 
 

The complete analysis was done for the distribution of phases in terms of the volume fraction with 

use of image analysis software Image J, as stated previously. The result is shown below in Fig. 6; 

overlapped for comparison.  

 

Fig. 6 Plot showing change in the pearlite content across the pipe wall thickness 

The number of measurements for each pipe specimen are limited by the thickness of the specific 

pipes. Therefore, the depth is listed as a function of overall thickness in Fig. 4, considering pipe 

sample 1 was about 8mm thick while pipe sample 2 was only 5.5mm in thickness. A total of 7-8 

measurements were taken per sample. The figure shows the variation in the phase volume fraction 

with increasing depth from the surface. Pipe 1 shows a decrease in the pearlite content in the middle 

region, whereas Pipe 2 shows a slight opposite behavior where the pearlite content being higher in 

the middle region and lower towards the surface. Pipe 3 shows a constant higher percentage of 

pearlite though the entire thickness. The predicted trend and the cause of variation is out of the 

scope of the study and hence not presented in detail here, instead the quantitative values along the 

thickness are used as input in the Bayesian Model. 

2.1.3 Ferrite Grain Size 

 

Grain size analysis was done for the samples using the lineal intercept procedure as per the ASTM 

standards [7]. The measurements were done for each layer from outside to inside surface. The 
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average grain size for both samples was observed to be 24um for the first two samples, and 19 um 

for the Pipe 44. The observed values are listed below: 

 

Table 2: Grain size details for pipe 45, 47 and 44 and 32 : 
S.No Pipe 45  Pipe 47 

Layers Grain Size (um)  Layers Grain size (um) 

1 Outer region     22.86  Outer region 24.13 

2 Middle region-1     21.8  Middle region-1 20.5 

3 Middle region-2     25.59  Middle region-2 27.44 

4 Inner region     27.69  Inner region 25.4 

 

S.No Pipe 44 Pipe 32 

Layers   Layers Grain size (um) 

1 Outer region 1  Outer region 17.4 

2 Middle region-1 2  Middle region 16.9 

3 Middle region-2 3  Inner region 16.66 

4 Inner region 4   

 

The grain sizes for Pipe 45 and 47 seem to show a little increase towards the inner region, probably 

due to differential cooling during the manufacturing process. Pipe 44 appears to have smaller grain 

size at both surface zones and higher grain size in the middle regions, again asserting to the TMCP 

process and cooling process afterwards. The values are used for model training and prediction. 

 

2.1.4 Chemical composition 
 

The chemical constituent of the phases was analyzed using EDS, and was observed to be Ferrite + 

Pearlite system for all the specimens. The elements of interest were chosen based on their direct 

or indirect correlation to the Yield and Ultimate Tensile strengths, obtained from literature [27]. 

The primary elements of interest were found to be Fe, Mn, Si, and N.  

Table 3a: Composition (weight percentage) of the pipe sample 45  

Region Elements 

C N Si Mn Fe Ni 

Outer region 0.09 0.23 0.26 1.29 97.92 0.31 

Middle region-1 0.06 0.12 0.04 1.19 98.29 0.17 

Middle region-2 0.2 0.01 0.03 1.28 97.97 0.15 

Inner region 0.15 - 0.06 1.23 98.13 0.16 

 

 

 

Table 3b: Composition (weight percentage) of the pipe sample 47 

Region Elements 

C N Si Mn Fe Ni 

Outer region 0.05 0.11 0.02 1.18 98.25 0.2 
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Middle region-1 0.21 - 0.01 0.89 98.69 0.05 

Middle region-2 0.07 - 0.04 1.26 98.34 0.19 

Inner region 0.08 0.02 0.02 0.93 98.66 0.23 

 

 

 

Table 3c: Composition (weight percentage) of the pipe sample 44 

Region Elements 

C N Si Cr Mn Fe Ni 

Top Layer - - 0.23 0.04 1.77 95.42 - 

Middle region-1 0.06 - 0.25 - 1.7 97.76 0.1 

Middle region-2 - - 0.27 0.05 1.8 97.41 0.11 

Bottom layer - - 0.26 - 1.73 97.33 0.19 

 

The composition for the elements of interest did not seem to vary too much along the thickness 

and therefore only the average values are listed here.   

 

2.1.5 Hardness 
 

Hardness was studied through Vickers Hardness Tester for two of the pipe specimen (1 & 2). The 

following tables show the results for the same for the two pipe samples; Outer region represents 

the outermost surface exposed to the surrounding going towards the thickness being represented 

by middle region 1 and 2, and inner region being the one towards the inner surface of the pipe. 

The results are reported for reference in the below tables: 

 

Table 4 a): Hardness Specimen 1-Pipe 45             b): Hardness Specimen 2-Pipe 47 
Samples Mean Hardness (HV) Samples Mean Hardness (HV) 

Outer region 220.2 Outer region 208.17 

Middle region-1 178 Middle region-1 217.27 

Middle region-2 203.06 Middle region-2 221.73 

Inner region 219.3 Inner region 226.03 

 

 

 

 

c): Hardness Specimen 3-Pipe 44 

Samples Mean Hardness (HV) 

Outer region 188 
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Middle region-1 188.2 

Middle region-2 206.5 

Inner region 200 

 

 

These values show that for pipe sample 45, the Hardness of the pipe walls, inside and outside is 

more than the middle regions. For pipe sample 47, the inside pipe wall appeared to have the highest 

hardness that correspondingly decreased towards the outer pipe wall surface. Pipe 44 appears to 

be stronger towards the inner regions. Although the trends observed are reported here, but they 

were not investigated being out of the scope of the paper, and only quantitative measures were 

used as input for the model.   

2.1.6 Tensile Properties 

 

The pipe specimen were tested using the Tensile-stage along the thickness, and the corresponding 

stress-strain curves were analyzed. The plots (Fig. 7) as well as the values of Yield and Tensile 

Strengths were extracted from the same, and are listed here.  

 

a) 
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b) 

 

 

 

c) 
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d) 

Fig. 7 Plot showing stress-strain behavior a) Pipe 45 b) Pipe 47 c)Pipe 44 d) Pipe 32 

 

Table 5 a): Stress-Strain data for Pipe 45          Table 5 b): Stress-Strain data for Pipe 47                    

Samples YS (MPa) UTS (MPa) Samples YS  

(MPa) 

UTS (MPa) 

S1(Top Layer) 450 572.99  S1(Top Layer) 355.5 462.2 

S2(Layer 2) 425 538.4 S2(Layer 2) 358.4 479.4 

S3(Layer 3) 435 555.6 S3(Layer 3) 366.2 497.8 

S4(Layer 4) 506 637.5 S4(Layer 4) 371.08 508.4 

 

Table 5 c): Stress-Strain data for Pipe 44        Table 5 d): Stress-Strain data for Pipe 32        

Samples YS (MPa) UTS (MPa) Samples YS  

(MPa) 

UTS (MPa) 

S1(Top Layer) 406 524.2 S1(Top Layer) 274.8 486 

S2(Layer 2) 373 500.4 S2(Layer 2) 268 444 

S3(Layer 3) 367 489.6 S3(Layer 3) 261 444.4 

S4(Layer 4) 397 501.5    

             

Following the trend from the hardness study, the tensile properties of the two pipe specimens also 

showed similar behavior, appearing to be stronger on the pipe walls for pipe sample 1 and weaker 

on the inside. Also, for pipe sample 2, inside pipe wall seemed to be the strongest with middle 

regions being little weaker and the outermost pipe wall surface being the weakest. Once again, the 

reported trends are not investigated, but the values are used for model validation. 
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2.2 Bayesian Model formulation 
 

2.2.1 Model formulation: 

The yield strength or ultimate tensile strength of pipeline specimen in service can be estimated in 

several indirect ways, through measurement of surface material properties and correlating them to 

strength through available literature data [27][28][7]. The material properties such as hardness and 

composition can be obtained experimentally without interrupting the operation of the pipeline.  

The current model makes use of this data and the available relationships to fuse them together and 

provide a more precise multimodal prediction of strength[29][30]. The general model for yield 

strength prediction appears as follows, where YS prior is updated using data from Hardness, H, 

Chemical composition, C and Volume fraction, V. YS and σys have been used interchangeably 

here. 

   M M Mp(YS | H,C,V, ) p(H,C,V |YS, )p(YS, )    (0.1) 

 

where, p( M)YS | H,C,V, is the posterior yield strength, ( ,M)p YS  is the prior yield strength, and  

Mp(H,C,V |YS, )  is the likelihood function in the model. To start with, each of these nodes have 

been provided equal weightage, which can be modified later with a sensitivity analysis approach, 

currently outside the scope of this paper. More formally, the likelihood model of YS is given as, 

| |) A( ) B( ) C( )YS H|YS C YS V YSl              (0.2) 

where, )YSl  is the likelihood model with
|YSH  

|C YS and 
|V YS  as the individual yield strength 

values derived from Hardness, chemical composition and volume fraction, as stated above. Due to 

the equal weightage assignment, each of the coefficients A, B and C in the likelihood model are 

each equal to 1/3. Fig.8.1 depicts the general schematic of the model. 

 

   

 

 

 

 

 

 

 

             

Fig.8.1 General flow of the model prediction and validation 
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Each of the individual relationships are described below. 

The relationship between yield strength and material chemical composition as well as grain size is 

realized as follows: 

     
1/2

|C 53.9 32.34( ) 83.2( ) 354.2(X ) 17.4( )YS Mn Si NfX X d        [27]      (0.3) 

where,
|CYS  is the yield strength of the material derived from the compositional parameters, MnX  

is the weight percentage of Manganese, SiX is the weight percentage of Silicon, XNf
 is the weight 

percentage of Nitrogen, and d is the grain size of ferrite (mm).  

Similarly, for a two phase microstructure system, the overall yield strength is assumed as the 

weighted average of yield strength of the individual phases. 

                                                               
YS|V (f) f (p) f(V ) (1-V )     [28]        (0.4)

where, 
YS|V  is the yield strength of the dual phase material derived from volume fraction alone, 

(f) is the yield strength of the ferrite phase and 
(p)  is the yield strength of the pearlite phase and 

fV is the volume fraction of ferrite.  

Next, the yield strength of the low carbon steel is related to the hardness as: 

| 2* 105YS H H    [7]              (0.5)

where, 
|YS H  is the yield strength derived from Hardness, and H is Vickers hardness. 

The material ultimate tensile strength also have similar relationships. The ultimate tensile strength 

is related to average chemical composition, volume fraction and grain size as follows: 

1/2

| , 294.1 27.7( ) 83.2(X ) 3.9( ) 7.7( )UTS C V Mn Si pX V d       [27]        (0.6)

where, 
| ,UTS C V is the ultimate tensile strength derived from compositional and microstructural 

parameters, 
pV  is the volume fraction of pearlite, and the other symbols have the usual meanings. 

Additionally, it is related to hardness as follows: 

| 1.3* 344UTS H H   [7]             (0.7) 

where, 
|UTS H  is the ultimate tensile strength derived from Hardness and H is the Vickers hardness. 

Known priors were used for each of these, derived from the literature knowledge of the system of 

API Steels with ferrite-pearlite microstructure [27][28][7]. The prior values (means) of the 

composition were given as; XSi = 0.02 for weight percent of silicon, XMn=0.2 for weight percent 

manganese,  XNf =0.02 as the weight percent of free nitrogen. Prior grain size, d was 10um, prior 

volume fraction of ferrite Vf was listed as 0.5 or 50% and prior Vickers hardness was assumed as 

150 HV 

The updating scheme makes use of Metropolis-Hastings algorithm to draw random samples form 

the probability distributions and perform updating by using the specified number of samples and 

allowing a margin for a burn-in period. All the priors and likelihoods follow a Gaussian 

distribution, for the purpose of simplicity and demonstration.  
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Strength prediction through Bayesian updating 

 

The statistical averaging model for the yield strength being of the form as listed below: 

YS= Ax + By + Cz + ε,           (0.8)

Where, x, y and z are pdfs representative of the equations (1.5), (1.6), (1.7), and ε is the random 

error component in the system, and A, B and C are the model coefficients corresponding to the 

variables. The resultant model is depicted in Fig. 8.2 YS and UTS represent the yield and ultimate 

tensile strength correspondingly.  

   

Fig. 8.2 Schematic representation of the Bayesian Network Model for Yield and Ultimate Strength 

prediction 

The above model for prediction of yield and ultimate strength depicts several nodes. Node 

FERRITE refers to volume fraction of ferrite, NF, SI and MN are the compositional parameters 

referring to weight percentages of free Nitrogen content, Silicon, and Manganese. Node GRAIN 

refers to the grain size and HARDNESS refers to Hardness of the material. The nodes VOL[i], 

NFC[i], SIC[i], MNC[i], SIZE[i] and HV[i] are all used for updating the corresponding primary 

nodes FERRITE, NF, SI, MN, GRAIN and HARDNESS, respectively, when a new observation is 

available. The model offers several unique features that are not available in most existing 

methodologies. First, continuous uncertainty reduction can be achieved if continuous observation 

from multimodality measurements is available for the interested material system. Another natural 

and important outcome from the proposed model is the node sensitivity. The predicted response 

could be more sensitive to one or more of the interconnected nodes, compared to the others, and 

this dictates the weightage assigned to the nodes. This information will be valuable for future 

optimization of inspection (i.e., only focusing on more sensitive node for information acquisition). 

Detailed the discussion on this topic is beyond the scope of the proposed study and needs further 

investigation.  

Another feature is that all the nodes in the model are co-dependent and updating can be performed 

in terms of data analysis for prediction as well as for the missing values, and hence all the nodes 

in the system can be updated, irrespective of a direct or indirect correlation with the updating node. 

This helps to converge the parameter values and quantifying the uncertainty of the system as the 

model is updated in the view of new information from various measurements.  
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The next section describes the experimental procedures utilized to gather data for performing 

training and validation of the Bayesian Network Model. The metrics analyzed here are the ones 

known to have a response in the present system, based on the equations (1.6) through (1.10).  

 

2.2.2 Model Validation for Prediction of Strength 
 

The present results as shown in Fig. 9 are for the different pipe samples. The input for the model 

are obtained from the data in Section 3, for the microstructure, hardness and composition, and are 

used to predict the corresponding Yield Strength and Ultimate Tensile Strength. The predictions 

are done for likelihood models with just one node for each of hardness, composition and volume 

fraction, as well as model with the nodes combined together as a weighted average, and are then 

compared to the actual experimental results from the tensile testing of the samples to measure the 

closeness of the predicted values with the experimental ones  
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b) 
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e) 

 

Fig. 9 Plot for prediction of Yield strength from individual nodes as well as put together a) Pipe 45(1) b) 

Pipe 47(2) c) Pipe X42R d) Pipe X42N e) Pipe 44 (3) 

 

For the first case a), it appears that prediction with node Hardness is 488.78, being 7.4% away 

from the experimental value of 454 and the best prediction, followed by prediction from all nodes 

combined being 414 or 8.81% away from the experimental value and prediction from chemical 

composition being the furthest away as 52.8%. For case b), the smallest deviation from true value 

was from all the nodes combined was 413.63, making it 14.08% from the true value of 362.79 and 

the largest one being 540.85 or 49.17% from node volume fraction.  

For c), the prediction from all nodes combined was 394.3 MPa or 10.65% away from the 

experimental value of 352 MPa being the closest prediction, whereas prediction from node volume 

fraction was 528.38 MPa being the farthest away of 33.3%. For case d), once again, the prediction 

from all nodes combined was 384.69 being the closest to the true experimental value of 370 MPa 

in the range of 3.97% and the farthest prediction was shown by node chemical composition, 

resulting in a value of 209.66 MPa or 43.51% away from the true value. 
 

2.2.3 Nodes codependency 
 

The Bayesian Network features codependency of the nodes that may or may not be directly 

correlated. This is demonstrated by changing the updating value for node Hardness and observing 

a change in the posterior distribution of other nodes like Silicon and Ferrite, as depicted in Fig. 10. 
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a) 

 
b) 

Fig. 10 Ilustration of nodes co-dependency a) Change in node HARDNESS followed by a change 

in node SILICON b) Change in the node HARDNESS followed by change in the node FERRITE 

 

The extent of change in the posterior densities of the nodes may differ, as can be seen from the 

above figures. This codependency can be useful in in order to derive (predict) missing information 

about one or more nodes, in an event such information is hard to obtain experimentally. 

 

2.2.4 Model Regression Coefficients Verification 
 

The various relationship between Yield Strength and material properties listed in the equations 

(1.5) through (1.10) were obtained from literature for different pipe systems pertaining to similar 

microstructure composition. As presented in section 4.1, these system of equations combined 

together predict a value of yield strength that can vary from 1.34 % to 14.01 % from the actual 

value of yield strength derived experimentally. Therefore, in an integrated form, these relationships 

may not be a holistic representative of the behavior of a particular system in view. In order to 

improve the prediction from the present Bayesian Network model, more information in terms of 

both data points and new metrics would have to be added in the model. Another way to improve 

prediction would be to update the relationship between yield strength and material properties 

derived from literature. This can be done by training the individual relationships with data for a 

specific system of pipes and then using the updated model coefficients for prediction. In this 

manner, if a complete data set (including tensile properties) is available for pipeline systems in a 

specific area, it could be used for training the present model coefficients and improving the 
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prediction of connected pipeline systems in a different region where destructive testing may not 

be available. In the present study, the data from X65 steels, obtained from literature [31], is used 

for a demonstration of the same. Data training and validation is performed by training the model 

and obtaining updated values of the model regression coefficients, and are validated by comparing 

the predictions of the tensile properties from both the initial and the updated model.  The procedure 

of this study is listed below: 

This study is done for the correlation of Yield Strength to Hardness, Composition and Volume 

fraction of Ferrite.  

Original relation from literature:  
1/2(53.9 32.34( ) 83.2( ) 354.2(X ) 17.4( ) 2* 105) / 3YS Mn Si Nf (f) f (p) fX X d (V ) (1-V ) H           

(4.1) 

Of the form (a b c d e f g-1/ 2

Mn Si Nf fYS + * X + * X + * X + * d + *V + * H                   (4.2) 

Where, ε = N (0, σ2), is a model error term.  

In the general case, these coefficients based on the literature equation are reported as: 

a = 158.9, b = 32.34,c = 83.2, d = 354.2, e = 17.4, f = , g = 2 

Training of the model with the literature data for a system of X65 pipelines yielded the following 

results: 

a =266.67, b= 28.46, c= 33.05, d= 162.33, e= 5, f= -8.67, g= 0.7 

The two models were used to predict the yield strength for the other API X65 pipeline systems.  

The comparative prediction with the updated coefficients for the likelihood model are listed and 

shown with the help of Fig. 11 a) & b): 
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b) 

  
Fig. 11 Plot showing Yield Strength vs pdf values with the original and modified coefficients for the two 

samples a) Pipe X65 1 b) Pipe X65 2  

 

Similar training was conducted for the pipe sample 2, as the complete data set was already 

available as presented before in experimental analysis section. The pipe 2 had four samples 

extracted from the thickness direction, as stated previously, the data points from two of which were 

used for training and the remaining two were used for prediction from the updated values. The 

original relation and the form remained the same as listed in eqn (7) and (8). The updated 

coefficients from the training of pipe 2 are listed below: 

a =688.7, b= 83.8, c= 913.6, d= 859.4, e= 15.48, f= 72.2, g= 1.31 

Fig. 10 c) shows the improved prediction from the updated coefficients. 
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c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) 
Fig. 11 c) & d) Plot showing Yield Strength vs pdf values with the original and modified coefficients for 

the two samples c) Pipe 45 (1) d) Pipe 47 (2) 

 

It can be seen that in all the three cases the prediction from the updated likelihood model shows a 

prediction value closer to the theoretical strength, and hence data training of the model can help 

improve prediction. It was also tested to predict the strength of other systems such as X52, X60 

etc, but it was observed that the training for a particular system of pipelines is restricted to improve 

the prediction of the similar systems, and specific training needs to be performed for the other 

grades of the pipeline systems to improve their prediction. 

 

2.2.5 Node Sensitivity 

A parametric sensitivity analysis was carried out to test for the most influential factor governing 

the prediction of Yield Strength. Information on the nodes was varied by +/- 30%, one at a time, 

and corresponding variation in the predicted results was noted. Two literature data (X65, X42) and 

two experimental data (Pipe 45 & 47) have been used for the demonstration of the same. The 

results are presented below: 

0.41 % 

14.01 % 
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a) X45 

 
b) X47 

 
c) X42 R 
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d) X42 N 

 
e) X65I 

 
f) X65II 
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g) X65III 

 
Fig.12 a) to g) Demonstration of variable change on the prediction capability of the different pipes 

 

As evident, hardness seems to be the most influential factor in all the above studies. The 

experimental Pipes 45 and 47 showed a variation close to 8% with hardness, and about 2.5% with 

both volume fraction and composition analysis. For the literature data of X42R and X42N, the 

change in YS predicted was about 3-4% with composition and volume fraction, and about 6.5% 

with Hardness. Finally with the system of X65 literature pipes, the variation in predicted YS was 

about 3% with volume fraction change,  6% with chemical composition change, and about 7.5% 

with Hardness change. The X65 being the only system with a high impact from the composition 

side. Overall Hardness seemed to be the most influential parameter followed by composition and 

then volume fraction. This information will be used later to assign varied node weights to balance 

out these effects. 
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CHAPTER 2: COMPARATIVE STUDY OF STATISTICAL MODELS FOR 

MANUFACTURING PROPERTIES PREDICTION 

 

Introduction 

 

The increasing demand in the production and consumption of oil and natural gas requires 

continuous improvement in both the transportation efficiency and the performance of the steel 

pipes[19]. The properties at this expanse are higher strength accompanied with sufficient 

toughness and ductility which are determined by the proportion of multiple microstructures 

consisting of well-selected phases and refined grain sizes. For the currently used high-strength 

steels, the determining factors to achieve the above-listed superior properties relies in a 

combination of alloy composition design, metallurgical technology, thermomechanical processing 

or heat treatment[20].  These steels are characterized by the low Sulphur content and reduced 

amount of detrimental second phases such as oxides, inclusions and pearlite[19]. As the 

composition is limited to a certain value, the improvement in the mechanical properties heavily 

depends on the complex thermomechanical controlled processing (TMCP) routes. The 

optimization of the process parameters of the TMCP is vital in order to achieve the desired 

mechanical properties. Nowadays, exhaustive production control and diverse simulation 

techniques are used to optimize the processing parameters for producing a desired microstructure, 

both of which are extremely expensive and only achieve good results in an a posteriori fashion. 

[21] A lot of work has been reported on analyzing the effect of the TMCP  processing parameters 

on the microstructure and mechanical properties such as the evolution of microstructure and 

precipitation state of high- level pipeline steel through TMCP process, in which the effects of 

processing parameters of TMCP, such as finish cooling temperature (FCT), finish rolling 

temperature  (FRT) and coiling temperature on the microstructure and mechanical properties of 

low C-Mn steel were reported [19].  

Thus, the manufacturing process parameters play an important role in the design and synthesis of 

new pipe grades with improved mechanical properties. In order to simplify the extensive need of 

process control and simulation techniques, the present work aims to utilize the pre-existing 

database of the effect of manufacturing process on the material properties to make a prediction of 

the required process parameters to obtain the desired microstructure design. Some well-known 

statistical models are employed for making such predictions and compared amongst themselves 

viz; Multivariate Linear Regression, Gaussian Process Modeling and multi-label K-nearest 

neighbors (ML-KNN) model and the efficiency of these models is compared. The input for these 

models can be the mechanical properties such as yield strength, fracture toughness required, 

whereas, the output will be process parameters such as cooling rate and coiling temperature. The 

classical linear regression is performed for multiple datasets using the generalized least square 

method, by minimizing the sum of squared error. The Gaussian process models are another way 

to perform Bayesian supervised learning. These are provided with a mean function, covariance 

function, and some hyperparameters for their prediction model. The final method is specifically 

known as ML-KNN or multi-label K-nearest neighbor, which is an extension of the traditional 

KNN method. This algorithm identifies k-nearest neighbors from the training data, based on the 

proximity of closeness from the given unknown samples. 
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3.1 Model for prediction of processing conditions 

 

The focus of this section is on the application of the different statistical models to predict the 

process conditions during pipeline manufacturing process such as cooling rate, cooling 

temperature etc. The input can be used as the desired mechanical properties such as Yield Strength, 

percentage elongation etc. 

 

The table below shows the input and the desired output [11]: 

 

       Labels            Features 

 

 
Rolling 

finish Temp 

(deg C) 

Cooling 

start Temp 

(deg C) 

Cooling End 

Temp (deg 

C) 

Cooling rate 

(deg C/sec) Elongation (%) 

Yield 

Strength 

(MPa) 

845 795 100 16 22 516 

845 795 200 19 28 523 

845 795 430 9.4 26 525 

735 700 240 14.5 21 533 

735 700 330 11 28 489 

735 700 420 9.3 22 561 

 

The prediction scheme used here are of three different types; Classical Linear Regression, 

Gaussian process model[32], and Multi-Label K-nearest neighbor method. The classical linear 

regression is performed for multiple datasets using the generalized least square method, by 

minimizing the sum of squared error.  

The Gaussian process models are another way to perform Bayesian supervised learning[32]. These 

are essentially composed of mean function, covariance function, and some hyperparameters for 

their prediction model. The most widely used functions in here are the meanConst mean function 

which has a constant mean that can be specified with a single value hyperparameter, and a 

covSEiso which is a Squared Exponental covariance function. It has been used for regression based 

problems as well[33][34].   

 

The final method is specifically known as ML-KNN or multi-label K-nearest neighbor[35], which 

is an extension of the traditional KNN method. This algorithm identifies k-nearest neighbors from 

the training data, based on the proximity of closeness from the given unknown samples. Given an 

unknown sample and a training set, all the distances between the unknown sample and all the 

samples in the training set can be computed. The distance with the smallest value corresponds to 

the sample in the training set closest to the unknown sample. Different types of distances can be 

used, Euclidean distance being most widely used. Given a training set (x1,y1) (x2,y2)….the 

regression model can be built. 

The Euclidean distance,D is given as: 

𝐷(𝑥, 𝑝) = √(𝑥 − 𝑝)2 

Where, p is the unknown test instance. 

The prediction from the KNN model is the average of the outcome of the k-nearest neighbors: 
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1 k

i iK
y y  , where yi is the ith case of the examples sample and y is the prediction (outcome) of 

the query point [36]. 

 

3.1.1 Prediction from the different models: 

 

Three small and different datasets were used for demonstration of prediction of the manufacturing 

conditions from the desired mechanical properties, and have been compared. At least 60% of the 

data was used for training and 40% used for prediction analysis for each dataset. For these 

comparison, Simple Linear regression follows the general scheme, the Gaussian process model 

uses meanConst as the mean function and covSEiso as the covariance function, and finally, the 

ML-KNN method uses the nearest neighbors value for k as 3, and a smoothing parameter, s as 1.  

 

The results have been shown for the first dataset here; this is a small dataset with 12 data points, 7 

of which are used for training, and the remaining 5 are used for prediction: 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.13 a) Y1 prediction           b) Y2 prediction 

 

It is observed that the prediction capability of Gaussian process model and ML-KNN work better 

than classical linear regression for this particular dataset. Some anomalies have been extracted to 

provide a better view of the model outcomes. This dataset outcome shows a relatively large error 

for the best prediction model to be within 40% at some places which needs to be investigated.  

 

Dataset 2: 

 

This dataset consists of 15 points in total, 8 of which have been used for training, and the remaining 

7 have been used for prediction. There are a total of four outcomes for this particular dataset, as 

shown below: 
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Fig.14 a) Y1 Start Rolling Temperature prediction b) Y2 Finish Rolling Temperature prediction 

 

 

 

 

 

 

 Fig.15 c) Y3 Cooling Rate prediction                          d) Y4 Finish Cooling Temperature prediction 

It can be seen that for three of the four outcomes, the ML-KNN works either equally best or better 

than the classical regression (SL) model or the gaussian process (GP) model. The exception in the 

prediction of cooling rate may be as the data set were not normalized initially; where GP model 

works the best. In general, for this dataset, the error value can be kept below 15%, which is a 

helpful aid in the prediction of these manufacturing conditions. 

Data set 3: 

This is a small dataset with only 8 datapoints in total,therefore, 5 points have been used for training, 

and the prediction outcome is shown for 3 points initially, and the other graph shows the prediction 

for trainign data size 4, and prediction data size 4 as well. 

 

 

 

 

 

 

 

 
Fig. 16 a) Y1 prediction with training data size 5   b) Y1 prediction with training data size 4 

 

Similar to the above assessments, it can also be observed in this case that the ML-KNN and GP 

model work well for both training size of the data, although in this case GP works slightly better 

or comparable to ML-KNN. The error for this dataset can be within 10% margin which also works 

well for prediction. 
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It can be seen from all the three datasets that these methods provide a good capability in the 

prediction of the manufacturing conditions for the desired mechanical properties. For the last two 

datasets, with the best prediction model, the error value can be controlled to be less than 10-15% 

at the maximum. In general ML-KNN works well for the three datasets. 

 

3.1.2 Model parameter variation for the different datasets:  

 

The parameters of the ML-KNN and the GP model have been varied, and the effect on the 

prediction has been reported. 

The below results are for Dataset 1 for variation of k in ML-KNN method: 

 

 

 

 

 

 

 

 

 
Fig.17 a) Y1 Finish cooling Temperature prediction   b) Y2 cooling rate prediction 

 

The above figures represent the impact of the variation of the number of nearest neighbors, N in 

the prediction outcome. It appears that N value of 3, 4 work well for Y1 prediction, whereas N 

values of 1 & 4 work well for Y2. 

 

Next, the results are shown for Dataset 1 for GP model parameter variation: 

 

 
 

Fig.18 a) Y1 Finish cooling Temperature prediction   b) Y2 cooling rate prediction 

 

The variation in the covariance function shows that covRQiso works well for Y1, and most of the 

other covariance functions work well for Y2. 
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Fig.18 c) Y1 Finish cooling Temperature prediction   d) Y2 cooling rate prediction 

 

The mean function variation shows opposite trends for both Y1 and Y2 and hence no conclusion 

could be drawn for better mean function. 

 

The next results are shown for Data set 2: 

 

ML-KNN parameter variation: 

 

 

 

 

 

 

 

 

Fig.19 a) Y1 Start Rolling Temperature prediction b) Y2 Finish Rolling Temperature prediction 

 

Fig.20 a) Y3 Cooling Rate prediction        b) Y4 Finish Cooling Temperature prediction 
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The N value was varied between 1 to 4. It appears that a N value of 3 and 4 works well for all the 

predictive outcomes. 

Next, the smoothing parameter, s, was varied between 1 to 10, and no significant change was 

observed, as indicarted below: 

  

 

GP model parameter variation: 

 

 

 

 

 

 

Fig.21 a) Y1 Start Rolling Temperature prediction b) Y2 Finish Rolling Temperature prediction 

 

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411 S=10

N=3 

S=1

S=2

S=3

S=4

S=5
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Fig.22 a) Y3 Cooling Rate prediction           b) Y4 Finish Cooling Temperature prediction 

It appears that MeanLinear and Meanconstant both work well for most of the predictive outcomes 

for this data set for the mean function variation. 

 

Fig.23 a) Y1 Start Rolling Temperature prediction      b) Y2 Finish Rolling Temperature prediction 

 

 

 

 

 

 

Fig.24 a) Y3 Cooling Rate prediction                  b) Y4 Finish Cooling Temperature prediction 

It can be seen that for the covariance function variation, covRQard and covRQiso work well for 

atleast three out of four prediction outcomes. 

Predictions for Dataset 3: 

ML-KNN parameter variation:  

The number of nearest neighbor was varied from 1 to 3 for this dataset. There is only a single 

outcome for this dataset as indicated earlier. 
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Fig.25 Y1 prediction 

It appears that k value of 2 works best to keep the error below 10% for this particular dataset. 

GP model parameter variation: 

  

Fig.26 a) Y1 Mean function variation                 b) Y1 Convariance function variation 

It can be observed that meanConst works well for meanfunction and covRQiso covariance function 

works well for this particular dataset to keep the error value to be about 10%. 

It can be inferred from the above results that the value of number of nearest neighbor depends on 

the number of points in the dataset, and in general a value of N=3 would work for smaller datasets 

upto 15-20 points. 

Also, the covariance function covRQiso works well for similar smaller datasets, whereas 

meanConst mean function works well for the model parameters of Gaussian process. 
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CHAPTER 3: INVESTIGATION OF VARIATION IN THE FATIGUE BEHAVIOR OF THE 

STEELS THROUGH THE THICKNESS OF THE PIPE SAMPLE 

 

Introduction 

 

The cyclic loadings during transportation (transit fatigue) and during service life, pipelines used 

in the oil and gas exploration suffer from significant fatigue damage, which if not enough to lead 

to a fracture, may severely affect the structural integrity of these entities. The fatigue damage in 

the pipe may occur even before they enter in service due a mechanism called transit fatigue. During 

transportation, pipes are subjected cyclic stresses, related to inertial and gravitational forces which 

are responsible for the nucleation and growth of fatigue cracks inside them, which compromise 

their structural integrity. The offshore line pipes may also suffer from fatigue damage during their 

service life due to the structures being subjected to cyclic loading originated from: cyclic pressure 

and thermal expansion loads and waves movement induced loads. Another way to have fatigue 

failures is in the pipelines used to transport hydrogen, especially at lower frequencies[22]. The 

resulting hydrogen embrittlement results in a loss of ductility and therefore the ASME codes 

impose the use of pipe with specified minimum yield strengths less than 360 MPa (52 ksi) for the 

transportation of hydrogen. This leaves steels with an API grade of X52 or lower for the same 

purpose, which are the steel grades associated with the present research work[23]. The effect of 

hydrogen gas on the fatigue properties of pipeline steels is not as well documented as tensile 

properties, however, because fatigue is not an uncommon contributor to failures observed in the 

operation of pipelines, fatigue properties may provide a better metric of the performance of a 

material in service. The research works therefore aims to investigate how the fatigue growth rates 

of cracks vary in the circumferential direction along the pipe wall thickness[24]. The specimens 

are drawn from different depths and  growth rates has been done through the analysis of da/dN x 

ΔK curves, focusing on their Region II (Fig.) where the cyclic growth of the fatigue crack is linear 

(on a log-log plot) and can be predicted by the Paris-Erdogan Law[22]: 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 

                (0.1) 

where da/dN is the fatigue crack growth rate, C and m are scaling constants and ΔK is the stress 

intensity factor range. The Paris-Erdogan Law only considers the ΔK increasing for the fatigue 

crack growth rate evaluation, and ignores the effect of the other parameters such as the load ratio 

and load frequency which also may impact the values of C and m. Therefore, for a given material, 

the evaluation of crack growth rates are to be done when the environmental conditions, temperature 

as well the load ratio and frequency are fixed, to reduce the influence on C and m.  
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Fig. 27 Typical fatigue crack growth curve for metals showing its Regions I, II and III[22] 

 

3.2 Test set up for Fatigue property analysis 

     

The fatigue behavior of three pipe steels have been analyzed here. The experimental investigation 

of fatigue behavior was conducted in the Servo-hydraulic MTS machine. This detail presented is 

for the top surface layer, which is going to be extended to through-thickness study of the fatigue 

behavior of the sample. The experiment was conducted at room temperature with a load level of 

1300~1500 N to start the pre-cracking and a corresponding load shedding was performed until 

1000N to observe about 20 data points for crack growth. The R-ratio used was 0.1, and the 

frequency was 5 Hz. A single-edged specimen with notch was used for testing, as depicted in the 

picture below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Dimension of fatigue test specimen with notch 
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The notch is sharpened further prior to the experiment to ease in crack initiation. The fatigue 

property analysis includes studying the crack growth rate of the specimen with respect to the 

number of cycles, and are not tested till complete failure. The images for the crack initiation are 

presented here: 

 

3.3 Crack growth behavior of the pipe steel 

 

The crack growth is assessed in terms of Number of cycles and crack length. The results are shown 

below for the three pipes. 

Pipe 47: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29 Fatigue crack growth, da/dN curves for Pipe 47 along the depth; a) Outer surface b)Middle region-

1 c) Middle region-2 d)Inner surface 

 

The total crack length in the pipe 47 was seen to be 1007 um for sample 1 towards the outer region, 

Sample 2 or middle region-1was tested until failure and the crack length before failure was 

3200um. Sample 3 or the middle region-2 had a crack length of 2080 um, and lastly sample 4 

towards the outer region was tested until the crack length of 1993 um. 

 

 

 

a) b) 

c) d) 
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Fig. 30 Grain structure after deformation of Pipe 47 a) Outer region 1 b) Middle region-2 c) Inner 

region-1 d) Inner region-2 

 

Crack growth characteristic of Pipe 47: 

 

In order to investigate the pattern of crack growth (intergranular or transgrannular), etching was 

done on the sample and the crack was viewed under SEM. The following images show the crack 

growth pattern for Pipe 4 
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Fig. 31 Crack growth pattern of Pipe 47 a) Outer region 1 b) Middle region-2 c) Inner region 

As can be observed by the above images, a clear analysis could not be drawn about the growth 

characteristic for the crack. The preferential etching after the test made the view not clear enough 

to be able to analyze the same with a SEM technique. The next step here would be to either etch 

the sample prior to testing to avoid preferential etching, or in a more advanced manner, conduct 

an EBSD around the crack to see the presence of grains and also the changes in the texture from 

the base metal 

 

Pipe 44: 

 

The crack growth curves for Pipe 44 are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 32 Fatigue crack growth, da/dN curves for Pipe 44 along the depth; a) Outer surface b)Middle region-

1 c) Middle region-2 d)Inner surface 

 

The total length of the crack before failure for the pipes were 1920 um for the top layer, 3126 for 

the middle region-1,3289 for middle region-2, 2405 for the inner region. 

 

 

 

 

 

a) b) 

c) d) 
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Fig. 33 Crack growth pattern of Pipe 44 a) Outer region 1 b) Middle region-2 c) Inner region 
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Fig. 34  Grain structure after deformation of Pipe 47 a) Outer region 1 b) Middle region-2 c) Inner 

region-1 d) Inner region-2 

 

Pipe 35: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 35 Fatigue crack growth, da/dN curves for Pipe 44 along the depth; a) Outer surface b)Middle region-

1 c) Middle region-2 d)Inner surface 

 

The final crack length for pipe 35 samples are 2300 for top region, and 2600 for the bottom region. 

 

The parameters of fatigue crack growth are depicted in the table below: 

 

Table 
 

Pipe Layers Pipe 44 Pipe 44 Pipe 35 

m C m C m C 

Outer region 3.20 10-11.91 3.2 10-10.9 3.2 10-11.29 

Middle region-1 1.58 10-8.9 2.43 10-10.4   

Middle region-2 4.37 10-13.4 3.52 10-11.9   

Inner region 3.47 10-11.9 2.38 10-10.5 3.19 10-11.27 

 

 

 

 

 

 

 

 

 

 

b) a) 
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CHAPTER 4: 3-D STOCHASTIC RECONSTRUCTION MODEL 

 

Introduction 

 

This reduction in the data volume will be achieved through the development of a 3-D 

reconstruction model, of the stochastic type, from the 2-D morphological information available 

from the surface depths, primarily for a two phase system, to be a representative of the bulk 

structure of the material. 

The methodology used for this is based on the stochastic reconstruction scheme developed by 

Yeong and Torquato [25].  Key structural features, known as statistical descriptors are extracted 

from the 2D images that can contain various correlation functions. A typical 2-point correlation 

function for a statistically inhomogeneous system is; 

                                𝑆2
(𝑖)(𝑥1, 𝑥2) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)〉 = 𝑆2
(𝑖)(|𝑥1 − 𝑥2|)                             (0.2) 

Where x1 and x2 are two arbitrary points and S2
(i)(x1,x2) is the probability of finding the two points 

in the same phase. A state of minimum “energy” is then computed from the given set of local 

minima, by the phase pixel interchange procedure in the digitized media. 

                                                                𝐸 = ∑ [𝑓𝑠(𝑟𝑖)−𝑓𝑠(𝑟𝑖)]
2

𝑖                                          (0.3) 

Where, f0(r) is the known two-point correlation function of the reference system, and fs(r) of the 

reconstructed digitized system, with r being the distance between two points in the system. The 

resultant energy from the phase interchange method is obtained as E’, with the energy difference 

as E-E’. The probability of the phase interchange given by the Metropolis method is given as: 

                                       𝑃 (𝐸𝑜𝑙𝑑

 
→𝐸𝑛𝑒𝑤) = {

         1,                         ∆𝐸 < 0     

 

exp (−
∆𝐸

𝑇
) ,           ∆𝐸 ≥ 0

                          (1.1) 

Where T represents temperature, and is adjusted with the simulation annealing method to converge 

the energy to a global minimum. 

 

Fig.36 The local minima, with the arrow towards the global minimum 

 

5.1 3-D stochastic reconstruction model for Pipe 45 
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The 3-D reconstruction was performed for two surface layers of Pipe 45, outer and middle region 

using a 2-D correlation function in perpendicular directions. The reconstructed images are 

presented below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 37 3-D reconstruction for outer surface of Pipe 45 

The reconstruction representation has the base image, followed by the cropped image fed for 

reconstruction. The extracted 2-D correlation function is presented and the final obtained 

reconstructed slices and 3-D image are presented 
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Fig.14 a) Raw Images Fig.14 b) 2D Correlation function 

Fig.14 c) 2D slices Fig.14 d) 3D Reconstruction 
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Fig.15 a): Raw Images Fig.15 b): 2D Correlation function 

Fig.15 c): 2D slices Fig.15 d): 3D Reconstruction 
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Fig. 38 3-D reconstruction for middle surface region of Pipe 45 

 

It can be seem that there is a considerable difference in the features of the outer and the middle 

region, which can be very well picked up by the reconstruction algorithm as well. The next step 

would be to extract linear elastic properties from these reconstructed segments using techniques 

such as Finite Element Method and compare them against the true properties for validation. This 

can be followed by plastic properties depending on the performance of the elastic properties 

prediction.  

 

6. Summary and Conclusion: 

 

The integrity assessment of the aging Natural gas pipeline system is proposed through the design 

of the Bayesian Network framework model, which integrates the different material properties 

derived from in-situ measurements. The model is validated from the results of experimental 

measurements to show an improved accuracy of strength prediction. Three field samples and a few 

literature databases were investigated to obtain the data for the model prediction and training. Next, 

a few popular statistical models were employed to aid in prediction of manufacturing process 

parameters and the impact of the parameter variation was studied for each dataset. Finally, fatigue 

behavior of the Pipe 47 was studied for variations in crack growth rate. The major conclusions 

from the present study are depicted here: 

 

1. Model validation performed by comparing the results of yield strength prediction from 

individual nodes versus prediction from all nodes together, showed an improved prediction 

with the latter. It was observed that prediction of yield strength with individual node 

Hardness resulted in a value being in a proximity of 11.8-36.4 % of the true experimental 

value. Similarly, prediction with node Chemical composition alone showed a large 

deviance of 34-49.17% from the experimental value, prediction with node volume fraction 

showed a deviation of 27.34-49.14%, and when taken all together, the combined prediction 

with all the nodes showed the smallest deviation of 1.34-14.8% from the true experimental 

value.  

 

2. Another important feature extracted out of this model was the ability to update all the nodes 

by modifying one of the nodes (updating information on Hardness resulted in change in 

the probability distributions of Silicon and Ferrite related node), signifying a systematic 

flow of information through the network.  This feature can be exploited in terms of 

obtaining a probabilistic estimate for any missing component.  

 

3. Next, the model was trained to modify the regression coefficients by making use of data 

points from the similar system and an improvement in the prediction capability of about 4-

13% was observed. 

 

4. The node sensitivity study for the Bayesian network model suggested that Hardness was 

the most sensitive node for which a change of 30% is followed by a change in 10% in the 
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prediction capability, whereas the volume fraction was the least sensitive node that changed 

the prediction capability by 4% approximately. 

 

5. The performance of KNN model depends on of number of nearest neighbor which in turn 

depends on the number of points in the dataset. A value of k=3 seemed to work for smaller 

datasets up to 15-20 points. 
 

6. For the Gaussian process model, the covariance function covRQiso appears to work better 

for such smaller datasets, whereas mean function that works well for the same is 

meanConst.  

 

7. The fatigue crack growth pattern was observed to be transgranular through the specimen. 

The microstrcuctural features such as the grain size and volume fraction of ferrite depicted 

a slight change after deformation, compared to the base metal.  

 

8. The parameters of fatigue crack growth depicted a slight change through the thickness of 

the pipe sample relating to the microstructure. The constant m was found in the range of 

2.5~4.5, whereas the constant C was observed to be in the range of 10-9 ~ 10-13 

7. Future scope: 

 

7.1 Bayesian Network validation, coefficients modification and sensitivity analysis for 

prediction of UTS 

 

As the current system is mainly focused on the prediction of Yield strength, the same can be 

replicated for the ultimate tensile strength for all the samples. The prediction can be tested for 

validation against the individual prediction nodes, parametric analysis of the individual nodes, as 

well as if the modification of coefficients is able to make an improvement in the prediction. 

The present model is designed with an equal weightage of all nodes, which can be modified 

through extensive training with a large data set by performing sensitivity analysis to obtain a more 

precise prediction of the strength, or through numerical simulation approaches. The model can be 

further explored in terms of accommodating the acoustic and electromagnetic properties, to obtain 

a holistic prediction of strength from a complete set of material properties data.  This study, overall, 

can be extended to a larger volume of data to improve the prediction capability of the model 

system, and training and validation can also be performed on specific grades of interest 

7.2 Analyzing Impact of Training data and model selection for the datasets 

 

As indicated for the study based on comparison of the models for the prediction of the 

manufacturing process parameters, 60 percent of the data was used for training and the remaining 

was used for prediction. An interesting thing to analyze would be the performance of these models 

to varying sizes of training data (limited due to the small datasets). Some other approaches will be 

investigated to complete this section. 
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7.3 Texture study of the fatigue and tensile tested samples 

 

Texture of the samples will be studies using Electron backscatter diffraction (EBSD) analysis. 

Sample preparation will the same as for microstructure examination as described in section 4.1.1. 

A change in the texture will be noted after the deformation through Tensile and Fatigue Test, and 

also along the pipe wall thickness direction. A correlation between the mechanical properties and 

texture will then be investigated.  
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CHAPTER 1 Near-field Microwave Imaging system design and optimization 

 

Advances in material science and manufacturing has produced complex engineering 

structures that can operate in fatigue and/or harsh environment. Infrastructure involving these 

structures in growing at very fast for which rapid inspection techniques are needed for their 

periodic maintenance. This is critical for ensuring the quality of service and reliability of 

structures in harsh environments. Thus, rapid nondestructive evaluation (NDE) technologies that 

can detect and characterize damage is of great interest at present. The developing of the micro-

electromagnetic sensing prototype is continued from CAAP14 as proposed in the project. Although the 

Near-field Microwave Imaging (NMHI) system is able to provide desirable diagnostic capabilities for 

applications in several areas. Speed is a big issue of current single sensor imaging. To improve the 

scanning speed and develop a reliable rapid NMHI system, fast imaging researches include multi-channel 

sensor design, innovative continuous data acquisition and sparse sensing method have been studied. This 

system is capable of imaging different defect profiles as well as sub-surface defects in dielectric materials 

using both amplitude and phase information of the reflected signals. The method was tested on various 

datasets with successful implementation of signal recovery using numerical optimization. A multi-modal 

correlation analysis between Digital Image Correlation (DIC) and NMHI data is studied as a potential in-

situ & ex-situ application of the system. The results show that the developed system provides good 

correlation with measured tensile strain and the dielectric properties of PA11 material, which 

demonstrates this fast, non-contract method as a promising alternate modality.   

1.1. Multi-channel sensor prototyping 

A multi-channel scanning sensor and the control circuit for the multi-channel scanning sensor for 

improving the scanning speed. The innovative design of the control circuit shows in Fig. 1-1(a). 

Compared with the current experiment, shown in Fig. 1(b), the control circuit compresses the directional 

coupler, RF to AC converter and data collection together to perform the same function. The control circuit 

uses a microcontroller to control the input and receive signal. There is no connection between data 

processing and receiving signal in the control circuit design, which will reduce the scanning time. 

 

  

    (a)   Improved design with Control circuit                (b) Current experiment design 

Figure 1-1 Design comparison of control circuit and current experiment setup 
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The control circuit schematic is shown in above figure. Several difficulties have been overcome 

while designing the control circuit. First is how to split the signal equally to each channel. This is 

important to the experiment to make sure the signal level is equal. Since the operation frequency of the 

scanning sensor is at 3GHz, it is difficult to avoid the noise if a long traces are used on PCB. Therefore, 

instead of building a splitter, a high speed switch has been selected to control the signal. The switch will 

allow the signal transfer to each probe sequentially. This will avoid the noise generated between the 

traces, also help avoid the noise that generate between the probes. The second problem we encountered 

during the design was how to store the return signal data. The goal of the design is for the field testing in 

the future. How to effectively store the data is important. Instead of using NI DAQ card as we do in our 

experiment, we chose to use a USB port for storing data for later processing. This will allow the design to 

be portable for future field testing. The USB port will also help reduce the scanning time since there is no 

data processing involved. The last question we had during the design process is how to generate the 

maximized input the signal. Even though the scanning sensors are designed for 3GHz signal, there will be 

slightly difference between each probe due to the machine error. To be able to adjust the frequency to 

maximize the signal would be another requirement for the control circuit. We chose Voltage Control 

Oscillator (VCO) to control the input signal. This will give us the freedom to adjust the input signal to 

obtain the better resolution.    

 

 

Figure 1-2 Control Circuit Design 
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The fabricated control circuit board and array antenna show in the following figure. The size of 

the circuit is approximately 8cm by 8cm. The next step is to program the IC to control the high speed 

switch for each element of array to radiate and receive signal. The design of the control circuit also has 

the ability for future expansion to up to 8 channels.  

 

 

 

 

Figure 1-3  Control Circuit and Antennas for multi-channel sensor. 
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1.2. 3D Model of Near-field Microwave Sensing  

In order to have a better understanding of the NMHI system and have a good reference to the 

experiment results, a 3D numerical simulation have been studied. For ideal lossless dielectric with 

excitation J, Maxwell equation can be written as: 

 

−∇ × E = jωμH             (1) 

∇ × H = jωϵ + J                   (2) 

∇ ∙ E =
1

𝜖
𝜌                             (3) 

∇ ∙ H = 0                               (4) 

The electric field and Magnetic Field introduce by excitation J can be described by 

E = −jωμA − ∇φ                 (5) 

H = ∇ × A                             (6) 

According to Lorentz gauge, the relationship between magnetic vector potential A and electric scalar 

potential ϕ is: 

∇ ∙ A = −jωεφ                      (7) 

Substitute (5),(6),(7) into (1),(2): 

∇2𝐴 + 𝑘2𝐴 = −𝐽                    (8) 

∇2𝜑 + 𝑘2𝜑 =
1

𝑗𝜔𝜀
∇ ∙ 𝐽                (9) 

For lossless media, k = ω√𝜇휀 

The solution of vector and scalar Helmholtz equation in the infinite space can be expressed as: 

A(r) = ∫ 𝐽(𝑟′)𝐺(𝑅)𝑑𝑣′ 

𝑣
          (10)  

φ =
−1

𝑗𝜔𝜖
∫ ∇′ ∙ J(𝑟′)G(R)

 

𝑣
𝑑𝑣′  (11) 

G(R) is the green function in the infinite space. R is the distance between observation point and the 

middle of the antenna. G(R) =  
𝑒−𝑗𝑘𝑅

4𝜋𝑅
  

The Integral form of the EM field can be described by substituting (10),(11) into (5) ,(6) and do vector 

transformation:  

E(r) = −jkZ ∫ [𝐽(𝑟′)𝐺(𝑅) +
1

𝑘2 ∇′. 𝐽(𝑟′)∇𝐺(𝑅)]𝑑𝑣′ 

𝑣
  (12) 

H(r) = −∫ 𝐽(𝑟′) × ∇𝐺(𝑅)𝑑𝑣′ 

𝑣
  (13) 
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By applying equivalence principle algorithm, we can get the electric field integral equation of the 

surface of nylon plate. Equivalence principle algorithm (EPA) was first proposed by Chew in 2006. It 

based on the Huygens’ Principle and exploits cubical surfaces to support equivalent sources. Consider an 

area with boundary, if the distribution of the source inside of the area is unchanged and outside of the area 

distribute different source. If the fields generated by those source satisfy the same boundary condition 

then the uniqueness theorem guarantees that there is only one solution to the problem which means we 

can find the relationship between source and field from the other pair. For some cases it will bring great 

convenience to the solve problem with the equivalent source instead of the actual source.  

If the V1 (ε0, μ0) is the free space and V2 (ε1, μ0) is a polyamide plate. S is the surface of the 

polyamide plate and n1, n2 are the exterior normal and inner normal.  

 

Figure 1-4 Equivalence principle Schematic 

 

V2 is passive. Surface current and surface magnetic current of S is: 

𝑗𝑠⃗⃗ = 𝑛1⃗⃗⃗⃗ × 𝐻1
⃗⃗ ⃗⃗    ,      𝑀𝑠

⃗⃗⃗⃗  ⃗ = −𝑛1⃗⃗⃗⃗ × 𝐸1
⃗⃗⃗⃗     (14) 

𝐸1
⃗⃗⃗⃗ , 𝐻1

⃗⃗ ⃗⃗   is the electric field and magnetic field on the S. According to uniqueness theorem, 𝑗𝑠⃗⃗  and 𝑀𝑠
⃗⃗⃗⃗  ⃗ are 

the equivalence source of V2. Set an antenna locate in V1 perpendicular to V2. Under the excitation of 𝐸𝑖⃗⃗⃗⃗ , 

𝐸1
⃗⃗⃗⃗  and 𝐻1

⃗⃗ ⃗⃗   on the S can be described as: 

𝐸1
⃗⃗⃗⃗ = 𝐸𝑖⃗⃗⃗⃗ + 𝐸𝑠⃗⃗ ⃗⃗   , 𝐻1

⃗⃗ ⃗⃗  = 𝐻𝑖⃗⃗⃗⃗ + 𝐻𝑠⃗⃗⃗⃗  ⃗       (15) 

Therefore 𝑗𝑠⃗⃗  and  𝑀𝑠
⃗⃗⃗⃗  ⃗ can be written as: 

𝑛1⃗⃗⃗⃗ × 𝐸1
⃗⃗⃗⃗ (�̅�) = 𝑛1⃗⃗⃗⃗ × 𝐸𝑖⃗⃗⃗⃗ (�̅�) + 𝑛1⃗⃗⃗⃗ × ∮[−𝑗𝜔𝑢0 𝑔0𝐽𝑠⃗⃗ −

𝑗

𝜔𝜀0
∇ ∙ 𝐽𝑠⃗⃗ ∇𝑔0]𝑑𝑠   (16) 

𝑛2⃗⃗⃗⃗ × 𝐸2
⃗⃗⃗⃗ (�̅�) = 𝑛2⃗⃗⃗⃗ × ∮[−𝑗𝜔𝑢0 𝑔0𝐽𝑠

′⃗⃗⃗⃗ −
𝑗

𝜔𝑢1
∇ ∙ 𝐽𝑠

′⃗⃗⃗⃗ ∇𝑔2 + 𝑀𝑠
′⃗⃗ ⃗⃗ ⃗⃗  × ∇𝑔2]𝑑𝑠  (17) 

𝑛1⃗⃗⃗⃗ × 𝐸1
⃗⃗⃗⃗ (�̅�) = 𝑛1⃗⃗⃗⃗ × 𝐸𝑖⃗⃗⃗⃗ (�̅�) + 𝑛1⃗⃗⃗⃗ × ∮[−𝑗𝜔𝑢0 𝑔0𝐽𝑠⃗⃗ −

𝑗

𝜔𝜀0
∇ ∙ 𝐽𝑠⃗⃗ ∇𝑔0]𝑑𝑠  (16) 

𝑛2⃗⃗⃗⃗ × 𝐸2
⃗⃗⃗⃗ (�̅�) = 𝑛2⃗⃗⃗⃗ × ∮[−𝑗𝜔𝑢0 𝑔0𝐽𝑠

′⃗⃗⃗⃗ −
𝑗

𝜔𝑢1
∇ ∙ 𝐽𝑠

′⃗⃗⃗⃗ ∇𝑔2 + 𝑀𝑠
′⃗⃗ ⃗⃗ ⃗⃗  × ∇𝑔2]𝑑𝑠  (17) 

𝑔𝑖 =
𝑒

𝑗𝑘𝑖|�̅�−𝑟′̅̅ ̅|

4𝜋|�̅�−𝑟′̅̅ ̅| 
     , 𝑘𝑖 = 𝜔√𝜇휀𝑖  (𝑖 = 0,1)   (18) 

Since the tangential component of E is continuous across the interface,  
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𝑛1⃗⃗⃗⃗ × (𝐸1
⃗⃗⃗⃗ − 𝐸2

⃗⃗⃗⃗ ) = 0 ,    𝑛1⃗⃗ ⃗⃗  ⃗ × (𝐻1
⃗⃗ ⃗⃗  − 𝐻2

⃗⃗ ⃗⃗  ) = 0 (19) 

Consider (19), and: 

𝑛1⃗⃗⃗⃗ = −𝑛2⃗⃗⃗⃗   , 𝐽𝑠
′⃗⃗⃗⃗ = −𝐽𝑠⃗⃗    , 𝑀𝑠

′⃗⃗ ⃗⃗ ⃗⃗  = −𝑀𝑠
⃗⃗⃗⃗  ⃗    (20) 

The sum of (17) and (18) is 

𝑛1⃗⃗⃗⃗ × 𝐸𝑖⃗⃗⃗⃗ (�̅�) = 𝑛1⃗⃗⃗⃗ × ∮[−𝑗𝜔𝑢0 𝐽𝑠⃗⃗ (𝑔0 + 𝑔1) +
𝑗

𝜔𝜀0
∇ ∙ 𝐽𝑠⃗⃗ ∇(𝑔0 +

𝜀0

𝜀1
𝑔1) − 𝑀𝑠

⃗⃗⃗⃗  ⃗ × ∇(𝑔0 + 𝑔1)]𝑑𝑠  (21) 

𝑛1⃗⃗⃗⃗ × 𝐻𝑖⃗⃗⃗⃗ (�̅�) = 𝑛1⃗⃗⃗⃗ × ∮[𝑗𝜔𝑢휀0 𝑀𝑠
⃗⃗⃗⃗  ⃗(𝑔0 +

𝜀1

𝜀0
𝑔1) +

𝑗

𝜔𝜇0
∇ ∙ 𝑀𝑠

⃗⃗⃗⃗  ⃗∇(𝑔0 + 𝑔1) + 𝐽𝑠⃗⃗ × ∇(𝑔0 + 𝑔1)]𝑑𝑠  (22) 

For far field, 𝐸𝑖⃗⃗⃗⃗  can be considered as a plane wave and the value will be constant. For near field, 𝐸𝑖⃗⃗⃗⃗  is a 

spherical wave 

𝐸𝑖⃗⃗⃗⃗ (�̅�) = 𝐸0
𝑖𝑟0

𝑒
𝑗𝑘|𝑟′̅̅ ̅−𝑟𝑇̅̅ ̅̅ |

 

|𝑟′̅̅ ̅−𝑟𝑇̅̅̅̅ |
𝑒
(𝑟′̅̅ ̅)
𝑖   (23) 

Since 𝐸𝑖⃗⃗⃗⃗ (�̅�) is a function of distance, the value of 𝐸𝑖⃗⃗⃗⃗ (�̅�) is different at different location. Therefore, 𝑟�̅� has 

to be taken into consideration. From above equations, we can calculate the distribution of current and 

magnetic current on the surface S and then we can get the equation of scattered field: 

𝐸𝑠⃗⃗ ⃗⃗ = ∮[−𝑗𝜔𝑢0 𝑔0𝐽𝑠⃗⃗ −
𝑗

𝜔𝜀0
∇ ∙ 𝐽𝑠⃗⃗ ∇𝑔0 + 𝑀𝑠

⃗⃗⃗⃗  ⃗ × ∇𝑔0]𝑑𝑠  (24) 

Since equation (21), (22) are too complex to solve by analytic method. Therefore we apply numerical 

method to get an approximate solution. Set nodes ri (i=1~N) on the surface of V2. 

𝑢ℎ(r, �̅�) = ∑ 𝑃𝑖(𝑟)𝑎𝑖(�̅�) = 𝑃(𝑟)𝑎(�̅�)𝑚
𝑖   (25) 

For each nodes assign influence of domain di and introduce weight function Wi(r- ri). 

𝑢ℎ(r, �̅�) = 𝑃 (𝑟)[𝑃
𝑇𝑤(𝑟)𝑃]−1𝑃𝑇𝑤(𝑟) = ∑ 𝜑𝑖(𝑟)𝑢𝑖

𝑛
𝑖=1    (26) 

 

1.3. Fast imaging acquisition for sensor optimization 

 

For the pervious scanning system, the initial scanning time for a small area is still very long. A 

scan of 190 mm x 100 mm area with step size 0.635 mm will cover 48,000 spatial locations. The scanning 

system applies step by step scanning method will stop at each spatial location and calculate spatial value 

by averaging 3000 samples. Therefore, to complete an entire scan the system will stop 48,000 times and 

process 144 million samples during the scanning. It will result in a very long operating time. Another 

disadvantage of step by step scanning system is the strong vibration since the step by step scanning 

system repeats moving and stop at each spatial location. It not only increases the scanning time but also 

introduce more noise and inaccuracy. 
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For a better scanning speed and performance, a continuous scanning method which avoid 

disadvantages mentioned above is developed. In the continuous scanning system, motor will continuous 

moving until reach the end of each column instead of stop at each spatial location.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                             Figure 1-5 Flow chart of the two thread 
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As Fig.1-5 shown above, a python code which controls two step motors and collects data at same 

time has been programmed. This code contains two threads. Thread one calculates the route of the motors 

according to the size of the scanning sample and drives the motors. Thread two collects the data read from 

NI-DAQ card and records the position current scanning.  

After inputting the length and width of the sample and deciding the resolution of the scan, the 

thread one will calculate the route of the entire scan. The route will cover the sample and the distance 

between each line is decided by the resolution. In the meantime, thread two will initialize the NI-card 

such as the communications protocols and sampling rate. Higher sampling rate will give a better result but 

also require more computational capabilities. When calculation of the route is completed, thread one will 

drive the motor01 to move the sample and read the feedback from motor01 to determine the position. 

Thread two keeps collecting the sampling data. Non-stop scanning increase the difficulty of locating 

point. Therefore, a global variable has been set as the bridge of the two threads to improve the scanning 

accuracy. Every time the motor01 return a message of status, thread one will check the motor position 

according to the route plan. The information of location will transmit to thread two via the global 

variable. When one line has been scanned, thread one will drive the motor02 in order to scan the next line 

until the route is completed. Thread two will average the samples and store the data into a matrix. At the 

end of the scan, the matrix will be plot as an image with ‘hot’ color map and the sampling data before 

averaging will be saved as raw data. 

 

        

                    

Figure 1-6 Continuous scan results of 2x2 inch2 area: (left) data collected from forward moving and (right) data 

collected from backward moving. 

 

As Figure shown above, it is the scanning result of a 2x2 square inches area with triangle with the 

sampling frequency as 100 KHz. It takes 0.86 s for the step motor01 moving over this 2 inches, therefore, 

86000 samples will be acquired for each column. The step size of step motor02 in 200 steps per inches. 

The size of triangle’s raw data is 86000x80 since the setup of this result is acquired data every 5 column. 

By taking mean of every 1000 data, the size becomes 80x86. It takes about 5 minutes for this entire 2x2 

square inches scan. 

 

http://www.baidu.com/link?url=SmQQ3OZClHHcmcsrzbF-c75yi3hM-geCg7sarSJ5-WAwOYNhqFEgIKnBq5B8RGu5y5wBFWmVFWu7f233QG8108PxPXkHdQ-L52F-Jkuqt5_
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(a). data collected from forward moving 

 

(b). data collected from backward moving 

Figure 1-7 Continuous scan results of 2x11 inch2 area 

 

As Fig. 7. shown above, it is the result image of a 2x11 square inches area. The squares shown in 

the image are with identical size (1x1 inch2) and different depth. The depth of the squares from left to 

right are 1mm, 2mm, 3mm, 4mm, 5mm, 6mm. The size of raw data is 86000x440. By taking mean of 

every 1000 data, the size becomes 86x440. It takes about 20 minutes for this entire 2x11 square inches 

scan. 
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(a). data collected from forward moving  (b). data collected from backward moving  (c). data collected 

from step by step  

Figure 1-8 Continuous scan results and step by step results of 2x8 inch2 area 

The (a) and (b) in Fig. 1-8 are the result image of continuous scan which took about 7 minutes. Image (c) 

in Fig. 8. is the result of step by step scan which took more than 2 hours.  

 

1.4. Compressive sensing based NMHI 

Another way to reduce the scanning time is reduce the sampling rate. Compressive sensing 

technique, which is the efficient way for signal acquisition is applied to the NMHI system to improve the 

imaging efficiency for the proposed micro-electromagnetic sensing system. According to the compressive 

sensing, the original signal be recovered from under sampled data points, by modeling the sampling 

problem into the underdetermined system of non-linear equations with some prior knowledge of original 

signal. The prior knowledge for microwave signal is that it shows sparsity in DCT domain. So, the 

problem can be solved by minimizing the system of non-linear equations using any of the minimization 

algorithms like basis pursuit, orthogonal matching pursuit, etc. 

 

For this CAAP15 project, CU team has successfully applied the orthogonal matching pursuit (OMP) for 

solving the underdetermined system of equations. We acquired just the 50% of original signal shown in 

Fig.2.10 and able to reconstruct the original signal back shown in Fig.2.11. 

 

Fig.2.10. 50% Under-sampled Data 
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Fig.2.11 Recovered using orthogonal matching pursuit 

 

 

1.4.1. Method 1: The minimization using OMP algorithm: 

The orthogonal matching pursuit algorithm tries to satisfy the error-constraints.  

x =  argmin
𝑥

‖𝑥‖ , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑦 − 𝐴𝑥‖2
2 ≤ 𝑒𝑝𝑠 

where,  

y is acquired undersampled signal 

A is measurement dictionary 

x is the sparse signal 

 

The greedy-OMP selects the atoms with high correlation with current residual at each iteration (step 4) 

and projects the signal over the span of selected atoms.  

𝛾 = 𝐴𝐼
+𝑟𝑒𝑠 

which, can be solved by using Cholesky factorization and leads to practical implementation. 

                𝛾 = (𝐴𝐼
′𝐴𝐼)𝐴𝐼

′𝑟𝑒𝑠 

𝐴𝐼
′𝐴𝐼 is a symmetric and positive definite matrix, which is updating with every iterations. 



73 
 

The cholesky factorization is simply represented as 𝑅′𝑅 = 𝐴𝐼
′𝐴𝐼, where R is the upper triangular matrix. 

 

\\ Implemented Algorithm Steps: 

1. Set, 𝑥 = 0 𝑎𝑛𝑑 𝑟𝑒𝑠 ← 𝑦 

2. 𝑖𝑡𝑒𝑟 = 0 

3. while, ‖𝒓𝒆𝒔‖ > 𝒆𝒑𝒔 , do 

4.  𝑖̂ ∶= 𝑎𝑟𝑔𝑚𝑎𝑥𝑖|𝐴𝑖
′𝑟𝑒𝑠| 

5.  𝐼 = (𝐼, 𝑖)̂ 

6.   find, 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅 𝑜𝑓 𝐴𝑖
′𝐴𝑖 

7.   𝛾 ∶=  𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑐 {𝑅𝑅𝑇𝑐 =  𝐴𝑖
′𝑟𝑒𝑠} 

8.  𝑟𝑒𝑠 = 𝑦 − 𝐴𝐼𝛾𝐼 

9.  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

10. end while 
 

The minimization problem could have number of minima’s available; reaching to global minimum is 

always hard. Using different minimization techniques and different set of constraints results in variation 

of finding minima. Orthogonal Matching Pursuit algorithm is leading the solution to one of its local 

minima or a limit point. The thought of finding other minima’s with different constraints could have lead 

us to better solution, so one more minimization algorithm is applied to the same problem with different 

formulation of constraints called Proximal Gradient Algorithm [2]. The results are shown in Fig. 2.12. 

 

 

Fig.2.12 Results from Proximal Gradient Method 
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1.4.2. Method 2: The minimization using Proximal Gradient Algorithm: 

The orthogonal matching pursuit algorithm tries to satisfy the error-constraints.  

min
𝑥

1

2
‖𝐴𝑥 − 𝑦‖2

2 + 𝜇‖𝑥‖1 

where,  

y is acquired undersampled signal 

A is measurement dictionary 

x is the sparse signal 

 

\\ Implemented Algorithm Steps: 

1. Set, 𝜇 > 0, 𝑡 = 1, 𝜏 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴′𝐴  
2. 𝑖𝑡𝑒𝑟 = 0 

3. while, ‖𝑨𝒙 − 𝒚‖ > 𝒆𝒑𝒔 , do 

4.  𝑌𝑖𝑡𝑒𝑟 = 𝑋𝑖𝑡𝑒𝑟 + 
𝑡𝑖𝑡𝑒𝑟−1−1

𝑡𝑖𝑡𝑒𝑟 (𝑋𝑖𝑡𝑒𝑟 − 𝑋𝑖𝑡𝑒𝑟) 

5.  𝑆𝑒𝑡, 𝐺𝑖𝑡𝑒𝑟 =  𝑌𝑖𝑡𝑒𝑟 − 𝜏𝑖𝑡𝑒𝑟−1
𝐴∗(𝐴𝑌𝑖𝑡𝑒𝑟 − 𝑏) 

6.   𝑆𝑒𝑡, 𝑋𝑖𝑡𝑒𝑟+1 = 𝑆𝜏𝑖𝑡𝑒𝑟𝐺𝑖𝑡𝑒𝑟 

7.  𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡𝑖𝑡𝑒𝑟+1 = 
1+√1+4(𝑡𝑖𝑡𝑒𝑟)

2

2
 

8.  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

9. end while 

1.5. Scanning images deconvolution 

Another issue for the pervious NMHI system is not able to acquire a clear image directly. The 

scanning images are blurred in the axial direction by the contributions of point spread function. The 

results of scanning include not only the propriety of the materials but also the pattern of the antenna. 

Therefore, an image enhancement method using deconvolution is studied.  

Deconvolution is a computationally intensive image processing technique existing in a broad range 

of signal and image processing fields. It becomes necessary when we want to deburr image for a better 

performance or further processing. The high-frequency information usually contains the texture 

characteristic of the target. Due to the point spread function is the low-pass filter, the high frequency of 

image is suppressed and even lost. Since the image textures are important visual information for the 

human eyes to detect damaging location, the aim of deconvolution is to reconstruct the high-frequency 

part. However, the observation noise will be amplified, which means that the deconvolution results may 

vary from the real solution. Therefore, the deconvolution method should compromise between the 

performance of the scanning reconstruction and noise amplification. 

 

 

 

𝑓(𝑥, 𝑦) 
ℎ(𝑥, 𝑦) 

𝑛(𝑥, 𝑦) 

I(𝑥, 𝑦) 
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Figure 1-9 model of degraded image 

 

The degraded images can be expressed as follow: 

 

i(∙) =  ℎ(∙) ∗ 𝑓(∙) +  𝑛(∙) 

 

I(t) is the image we acquire from the scanning, ℎ(𝑥, 𝑦) is a pulse response of the linear system which is 

also known as point spreads function, and 𝑛(𝑡) represents noise. 𝑓(𝑥, 𝑦) is the physical quantity without 

distortion that we want to solve. If one of the functions ℎ(𝑥, 𝑦) or 𝑓(𝑥, 𝑦) is known, we can use Weiner 

filtering or iterative restoration to recover the other function. The problem is termed as blind 

deconvolution if neither ℎ(𝑥, 𝑦) or 𝑓(𝑥, 𝑦) is known and only the output image i(𝑥, 𝑦) is available. 

 

1.5.1. Point spread function estimation 

 

In order to solve the deconvolution and get the f(𝑥, 𝑦), we first find an estimate of the Point spread function. 

The first estimate is based on the pattern of the antenna. We first generating a matrix to approximate the point 

spread function by the following equation: 

 

𝐸𝜃 ≅ −𝑗𝜂 
𝐼0𝑙𝑒

−𝑗𝑘𝑟

4𝜋𝑘𝑟3
𝑠𝑖𝑛𝜃 

 

The size of the matrix is measured the blurred part around square on the scanning image.  
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Figure 1-10 The estimation of the point spread function 

Since the estimation contains some very small value or even zero, and matrix is in the denominator during the 

calculation, we use the Weiner filtering to solve the deconvolution instead of divide directly. 

  

Figure 1-11 results of the deconvolution 

To a certain extent, we can see the square in the figure 3. However, it is unclear and still very blurry. Another 

approach is estimating the point spread function by deconvoluting the f(𝑥, 𝑦) from the i(𝑥, 𝑦). Although f(𝑥, 𝑦) 

is unknown and need to be solved, we can get an approximation 𝑓′(𝑥, 𝑦) by observing the scanning object. 

Then the point spread function estimation ℎ′(𝑥, 𝑦) can be solved by the following equation if we ignore the 

noise. 

 

ℎ′(∙) =  ifft(fft(i(∙))/fft(𝑓′(∙)))        

In the equation, fft and ifft represent fast fourier transform and inverse fast fourier transform respectively.  

 

We scanned a PA board with a 1-inch by 1-inch square hole six times and stored the data as 𝑖𝑘(𝑥, 𝑦), k ∈

[1,6]. The scanning system acquires 200 data per inch which corresponding to 200 pixels in the image. 
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(a)                                   (b) 
Figure 1-12 Scanning image and the approximation of the object vertexes 

 

  
(a)                            (b) 

Figure 1-13 Reconstructed PSF and reconstruct image using the ℎ′ (𝑥, 𝑦) 

 

We draw a 200 by 200 square on the corresponding location in the Matlab as the 𝑓′(𝑥, 𝑦). Then ℎ′𝑘(𝑥, 𝑦) 

can be solved by equation. By averaging ℎ′𝑘(𝑥, 𝑦) we can get the estimate of the point spread function. 

However, the result is not accurate since the poor knowledge about f(𝑥, 𝑦). The f′(𝑥, 𝑦) we used may have 

a big difference from the actual physical quantity. The estimate of the point spread function need to be 

improved since the pattern should be central symmetry and have the greatest value at the center. 

1.5.2. Blind deconvolution 

 

Blind deconvolution is very complicated since we have to infer both the original object and the point-

spread function. There are many methods and can be divided into two categories, statistical approach and 

deterministic approach. We study both two methods and in this quarter we implemented one of the 

statistical deconvolution algorithm on the near-field microwave microscopy system. 
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Richardson–Lucy deconvolution algorithm is a statistical approach which based on the Maximum 

Likelihood and developed from Bayes’s theorem.  

 

P(𝑥|𝑦) =
P(𝑦|𝑥)𝑃(𝑥)

∫ P(𝑦|𝑥)𝑃(𝑥)𝑑𝑥
 

The P(𝑥|𝑦) is the conditional probability of the event x when event y has happened. If we take the 𝑃(𝑥) 

as the physical quantity f(𝑥) we want to solve, P(𝑦|𝑥) as the point spread function ℎ(𝑦, 𝑥)located at x and 

𝑃(𝑦) as the scanning image 𝑖(𝑦), we can get the equation 

𝑓𝑗+1(𝑥) = ∫  
ℎ(𝑦, 𝑥)𝑖(𝑦)𝑑𝑦

∫ℎ(𝑦, 𝑧) 𝑓𝑗(𝑧)𝑑𝑧
𝑓𝑗(𝑥) 

The j in the equation is the iteration number. If the point spread function is known, the f(x) can be solved 

by the following equation 

𝑓𝑗+1(𝑥) = {[
𝑖(𝑥)

𝑓𝑗(𝑥)ℎ(𝑥)
]ℎ(−𝑥)}𝑓𝑗(𝑥) 

 

Since we already know the scanning image i(x) and the point spread function ℎ(𝑥), all we need to do is 

iterating the equation until convergence with an initial guess of the 𝑓 (𝑥). 

 

In the blind deconvolution both ℎ(𝑥) and the 𝑓 (𝑥) is unknown and need to be calculate in the previous 

iteration.   

 

ℎ𝑗+1 (𝑥) 
𝑘 = {[

𝑖(𝑥)

ℎ𝑗 (𝑥) 
𝑘

 𝑓 (𝑥) 
𝑘−1

]𝑓 (−𝑥) 
𝑘−1 } ℎ𝑗 (𝑥) 

𝑘  

𝑓𝑗+1 (𝑥) 
𝑘 = {[

𝑖(𝑥)

𝑓𝑗 (𝑥) 
𝑘

 ℎ (𝑥) 
𝑘

]ℎ (−𝑥) 
𝑘 } 𝑓𝑗 (𝑥) 

𝑘  

 

 

We have implement this algorithm with the testing data. The value range of the scanning data is around -

0.003. Therefore, in order to get the data prepared for the following process, we should First normalize 

the scanning data.  
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Figure 1-14 Scanning result and normalized grayscale image 

 

Then we should make an initial guess about the size of the point spreads function. The size of the point 

spreads function is critical and will have more effect on the result of the deconvolution. It can be 

determined by measuring the blurred part around a noticeably sharp object on the scanning image.   

 

 

 

 

 

 

 

 

 

 

 

(a)                                 (b) 
Figure 1-15 (a) restored point-spread function  (b) restored point-spread function from down-sampled data 
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Figure 1-16 deblurred image 

In order to improve the result of the deconvolution, a weight matrix has been generated by applying the 

edge detection. This will let the deconvolution process ignore the high contrast areas and the noise reduce 

relate to the contrast can be reduced. 

 

Figure 1-17 result of edge detection 

The size of the weight matrix is same as the image. The high-contrast areas have been assigned the zero 

value and the corresponding pixels in the scanning result will be excluded from the deconvolution 

processing. The high-contrast areas can be detected by edge detection.  
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Figure 1-18 deblurred image using weighted method 

 

(a)                      (b)                        (c) 

Figure 1-19  black and white image of (a) scanning result (b) deblurred image (c) deblurred image using weighted 

method 

In order to have a more obvious contrast, the image is converted to a black and white image. From the 

figure 1-19 it can be seen that the result of the deconvolution suits the actual shape of object better than 

the original scanning result.  

1.6. Strain estimation using NMHI 

Strain measurement is one of the essential elements in materials or structural testing. Knowing the 

distribution of strain and its value at the critical zones of the structure lead to important indicators for 

evaluating the strength and life of the structure. Damage initiates in a structure by permanent deformation 

accompanied by elastic and plastic strains. Plastic strain occurring in the structure indicates an alarming 

situation that cannot be neglected. In this paper we consider the detection of deformation involving 

residual elastic strain and plastic strains. We limit our work scope to a very large deformation occurring in 

the dielectric materials. 

 

The current strain measurement methods for dielectric materials can be divided into contact types and 

non-contact types. The contact-based methods include the ultrasonic method is one of the most mature 

and widely used technology. However, the use is complicated on the structure with special geometry and 

requires skilled personnel to perform the NDE. Also, contact based ultrasonic probes involve application 

of gel and consumes lots of time. The non-contact modes includes photo elastic method, DIC(Digital 

image correlation), X-ray, noncontact ultrasound, capacitive  and microwave techniques. The DIC 
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technique is a cost-effective and full-field optical measurement method, which obtains the strain data by 

relating different digital images taken at various stages of test and tracking blocks of pixels in the images. 

Although DIC offers accurate strain information of the OUT (object-under-test), it requires continuous 

data acquisition during the deformation. Thus, it is limited to small structures for real time monitoring and 

is not applicable to NDE. The X-Ray system is hazardous expensive and not practical for field testing. the 

ultrasound involves expensive sensing system and the inspection speed is limited.  

Therefore, a strain estimation method of dielectric material using NMHI technique is investigated, 

followed by a multi-modal correlation analysis between DIC and NMHI data. 

 

NS_0.7 von Mises strain                                 NS_0.7 von Mises stress  

 

FS_0.7 von Mises strain                                  FS_0.7 von Mises stress  
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NS_0.3 von Mises strain                                  NS_0.3 von Mises stress  

Figure 1-20 von Mises strain and stress simulation 

FS is short for full specimen, which means there is no hole on the specimen. NS is short for notched 

specimen, there is a small round hole on middle of the specimen. 0.7 stands for the percentage of 

maximum value of displacement when specimens are elongated. For example, if specimen is about to 

fracture when displacement is 5 cm, 0.7 means specimens are stretched to 3.5 cm.  

 

For the NS specimens, we select section line along the hold root. The 1-D plots of the Von Mises strain 

have been shown below. As we can see in the picture, the strain reach its peak at the center, where is the 

location of the hole root. The strength of structure is less then rest part of the specimen due to the hole. 

 

 

(a) NS_03 
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(b) NS_07 

Figure 1-21 1-D plot of the von Mises strain 
 

Then we conducted the multi-physics simulation. Use the output of the mechanical simulation as the 

input of e-field simulation. We select section line along the hold root. The 1-D plots of the E-field have 

been shown below. 

 

Figure 1-22 Multi-physics simulation of the E- field on the specimen 
 

ASU did tensile testing on the full specimens and notched specimens. We scanned the specimens by 

nonstop scanning system, in order to compare and correlate the DIC (mechanical properties) and NMMI 

(micro-electromagnetic properties). The blue stars stands for the data from near field scanning, and the 

red dash line is the average of scanning data. The solid blue line is the DIC result. 
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For the notched specimens, we can see that both of the red lines and blue lines are similar to the 

simulation result. The trends of red lines and blue lines are similar except the middle part where the hole 

located. 

 

 

 

 

Figure 1-23 scanning results and correlation of the notched specimens 

For the full specimens, we can see the trends of the red lines and blue lines are similar. They matched best 

in FS07 and they matched better in FS05 than FS03.  
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Figure 1-24 scanning results and correlation of the full specimens 

As shown in the Fig. 1-25 (a), the curves which represent NMHI data measured from specimen decrease 

with the Von Mises strain. The best agreement is shown in the plot of 70% elongation whereas 

discrepancies between the two estimates are seen in 50% elongation. For the 30% elongation, there is 

significant deviation between the two approach, but they exhibit similar trends. It can be seen that NMHI 

data has better agreement with DIC under larger elongation or when the strain is higher. This is 

reasonable since more strain will result in larger change in the dielectric properties. The data in Fig. 1-25 

(b) represents NMHI’s and DIC’s measured strain data for NS. The NMHI data doesn’t follow a close 

trend with DIC’s data at center due to the presence of an extra drilled hole on to the specimen. The drilled 

hole perturbs the fields of NMHI probe and gets significantly more responsive to the shape of physical 

structure than its dielectric properties. It can be seen that NMHI data follows the stress at the edges as it is 

the scanning data away from the hole.  
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CHAPTER 2 Magnetic Barkhausen Noise system development and 

optimization 

 

 

MBN is a promising nondestructive electromagnetic method for detecting properties of the 

ferromagnetic materials. Carrying out information about the microstructure and properties of steels, 

Barkhausen Noise has been used as a basis for effective Non Destructive Testing methods, opening new 

areas in industrial applications. It shows excellent performance in evaluating mechanical characterizations 

and electromagnetic properties of steel by virtue of sensitive to microstructure changes. Based on analysis 

of some typical features of MBN such as the root-mean-square (RMS) value, the peak value, position and 

half-width value of profile curve, the relationship between MBN signal and microstructure (grain 

boundary, grain size, composition), hardness, applied and residual stress, fatigue and damage, and plastic 

and elastic deformation have been investigated. Ktena et al. compared interlaboratory results about the 

relation- ship of MBN and grain size and the strain showed that MBN decreases with increasing grain size 

and increases with strain, consistently. Franco et al. showed linear correlations between different MBN 

parameters and hardness measurements in the steel SAE 4140 and SAE 6150 with different excitation 

signal frequency. Stewart et al. analyzed the different parameters of MBN with applied stress include 

tension and compression and determined residual stress near the edge of the weld with the conclusion 

 

2.1. Preliminary experimental design and setup 

 

The Barkhausen Noise is a magnetic phenomenon produced when a variable magnetic field induces 

magnetic domain wall movements in ferromagnetic materials. These movements, not continuous but 

discrete, are caused by defects in the material microstructure, and generate magnetic pulses that can be 

measured by a coil placed on the material surface.  

 

2.1.1. Design of the experiment  

The flow chart of experiment is shown in the Fig. 1. The 

waveform generator is used to provide the input sin signal with 

the frequency of 100Hz and the voltage of 1V. Power 

amplifier has been used to amplify the signal generated by the 

waveform generator. The amplified signal as the excitation 

signal flow into the excitation coil (55) wrapped around the U 

shape iron. The small signal picks up from the induction coil (40) 

pass through the low power amplifier and band-pass filter with 

the pass band 5KHz-200KHz to get the useful Barkhausen 

noise signal which frequency between 10KHz-100KHz for steel and get rid of the excitation signal and 
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ambient noise. Then we can use NI PCI device to acquire and store the data in computer for the data 

processing later. The Fig. 2-2 shows the picture of sensor and the circuit of amplifying and filtering. 

 

 

      

 

 

Figure 2-1 design of the experiment 

 

 

Figure 2-2 sensor and the circuit of amplifying and filtering 

 

2.1.2. Data Acquiring and storing 

The processed analog signal can be acquired by NI PCI device combining with LABVIEW sampling 

program to convert the analog signal into digital signal for further processing in computer. The 

LABVIEW program diagram is shown in Fig. 2-3. The sampling program consists of establishment of the 

physical channel, setting of sample clock, reading the sample data and writing the data to file. For the part 

of setting of sample clock, considering the maximum frequency of the signal and the speed of read and 

write of the data acquisition equipment, we choose the frequency of 200KHz as sampling rate. For sample 

mode, we choose continue sampling so that we can get continue image on front panel until we turn off the 

button. To get the frequency spectrum of the signal directly from front panel, we can carry on the FFT 

transformation on the original signal. Fig.2-4 shows the front panel when the input is a 100Hz sin signal.  

Waveform 

generator  

Power amplifier 
Low power amplifier 

Band-pass 

 filter 

Data 

acquiring 

sensor 
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Figure 2-3 LABVIEW program 

 

Figure 2-4 front penal of LabView 

 

2.1.3. Data processing with MATLAB 

 

Profile curve refers to the complete outline of the Barkhausen noise in half of the period. The properties 

of profile curve such as the peak value, the peak time and half-width-value contains many useful 

information about the microstructure and properties of metals. 
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Figure 2-5 Barkhausen noise profile curve 

 

The value of root-mean-square as the most popular methods to show the intensity of the Barkhausen 

noise is intimately linked with the properties of metals. The expression for calculating the RMS of the 

noise is shown in below. 

 

Comparing the waveform from the front panel of the LABVIEW with the acquired data processed by 

MATLAB, we can find that there is no much different between the two. The signal presents a good 

periodicity. 

 

Figure 2-6 waveform from front panel of LABVIEW (excitation signal 100Hz 1V) 
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Figure 2-7 Waveform from MATLAB (excitation signal 100Hz 1V) 

 

  To get rid of the Gaussian White Noise of the signal and to get a complete signal of one period, we can 

add 5 periods signal up to get the average signal for one period. The code of MATLAB is shown below. 
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Figure 2-8 one period waveform (excitation signal 100Hz 1V) 

 

From Fig. 2-8, we can find that the waveform looks much better than the original one. It is much 

smoother compared with the waveform in Fig. 8 for the Guassian White Noise has been removed from the 

signal.  

 

Figure 2-9 profile curve of absolute value of the signal 
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2.1.4. Influence factors 

  Comparing the waveform of the signal we get with the Barkhausen noise from other paper(Fig.2-10), 

there is a little different between the two. Even though the signal we get expresses a good periodicity like 

the waveform in Fig.2-10, the signal has only one obvious oscillation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Barkhausen noise from other paper 

  The figure 2-11 shows the Barkhausen noise with different frequency of excitation signal. We can find 

that when the frequency of the excitation signal lower, there will be two peaks in half of one period. 

When the frequency of excitation signal little higher than 100Hz, the Barkhausen noise do not have much 

change compared with the 100Hz. But when excitation signal much higher than 100Hz, the Barkhausen 

noise will disappear. 

 

(a) Excitation signal (100Hz 1v) 
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(b) Excitation signal (80Hz 1v) 

 

(c)  Excitation signal (120Hz 1v) 

 

(d) Excitation signal (1KHz 1v) 
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Figure 2-11 Barkhausen noise with different frequency of excitation signal 

2.2. Magnetic spins simulation  

In a canonical ensemble, the average of the physical quantities can be expressed with Boltzmann 

distribution weight. 

avg < A(x) >=
∫ 𝑒−𝐻(𝑥)/𝐾𝐵𝑇𝐴(𝑥)𝑑𝑥

∫𝑒−𝐻(𝑥)/𝐾𝐵𝑇𝑑𝑥
       (1) 

Where H(x) is Hamiltonian, the 𝐾𝛽 is the Boltzmann constant and T is the Kelvin temperature. The x is 

the vector of the phase space which representing the degree of freedom of the system. The Ising model is 

one of the important theoretical models in statistical physics which can be used to describe the magnetic 

properties of anisotropic ferromagnetic materials. This method able to calculates the desired mean nature 

from the system's Hamiltonian. The Ising model use a finite lattice to simulate the state of the spin which 

represent the little magnetic moments. There are two possible state of the spin, +1 or -1, which represent 

the direction of the spin. It is very hard to compute all the state of the system; therefore, Monte Carlo 

method is employed to calculate the approximate solution.  

 

𝐴(𝑠)̅̅ ̅̅ ̅̅ =
∑ A(𝑠𝑖)𝑒

−𝐻(𝑠𝑖)/𝑘𝐵𝑇𝑁
𝑖=1

∑ 𝑒−𝐻(𝑠𝑖)/𝑘𝐵𝑇𝑁
𝑖=1

           (2) 

 

The eq. (2) is a simple sampling method in the Monte Carlo method which carried out with an average 

distribution, and each sample is completely independent. In order to improve the calculating efficiency, 

importance sampling is applied. Instead of sampling the phase space uniformly, the phase space point S𝑖 

is selected by the probability 𝑃(X𝑖). The average state of the system is estimated based on these state 

samples according to the known probability distribution. Therefore, we get: 

𝐴(𝑠)̅̅ ̅̅ ̅̅ =
∑ A(𝑠𝑖)𝑒

−𝐻(𝑠𝑖)/𝑘𝐵𝑇/𝑃(s𝑖)
𝑁
𝑖=1

∑ 𝑒−𝐻(𝑠𝑖)/𝑘𝐵𝑇𝑁
𝑖=1 /𝑃(s𝑖)

        (3) 

Where 𝑃(X𝑖) should satisfy： 

𝑃(X𝑖) ∝ 𝑒
−

𝐻(𝑠𝑖)

𝑘𝐵𝑇                     （4） 

Then, eq.(3) can be express as a simple summation: 

𝐴(𝑠)̅̅ ̅̅ ̅̅ ≈
1

𝑁
∑A(𝑠𝑖)                  （5）

𝑁

𝑖=1

 

In order to simulate the interacting magnetic spins with a changing external magnetic field, a simplified 

two dimensional Ising model is approximated by Monte Carlo method. A lattice system contains 4 by 4 

Ising spins with periodic boundary conditions is shown below.  
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Figure 2-12 Schematic representation of the 4 by 4 Ising spin lattice with periodic boundary conditions. 

 

The simplify Ising model is given by the Hamiltonian  

Consider a L by L Ising spin lattice system, N is the total number of the spins which equal to L *L. J is 

the interspin interaction, 𝑠 is the spin state with value <1 or -1>, B is the external magnetic field. <i,j> are 

the nearest neighbor spins. One state of the system can be described as  

𝑆𝑘
⃗⃗⃗⃗ =  (𝑆𝑘,1, 𝑆𝑘,2, …… . . , 𝑆𝑘,𝑖 , ……𝑆𝑘,𝑁)                   (7) 

Where k is the kth step within the Monte Carlo step. First, an initial state 𝑆0
⃗⃗  ⃗ is random generated. Then, let 

𝑆 𝑘+1
(0)

 equal  𝑆𝑘
⃗⃗⃗⃗ .   

𝑆 𝑘+1
(0)

= (𝑆𝑘+1,1
(0)

, 𝑆𝑘+1,2
(0)

, ….  , S𝑘+1,𝑖
(0)

, … . . S𝑘+1,𝑁
(0)

) = 𝑆𝑘
⃗⃗⃗⃗        (8) 

A temporary state 𝑆 𝑘,i
∗  is used to determine whether the spin would flip. Assume the spin 1 is flipped. 

𝑆 1
1∗ = (−𝑆1,1

(0)
, S1,2

(0)
, ….  , S1,𝑖

(0)
, … . . S1,𝑁

(0)
)            (9) 

If ∆H ≤ 0 then S1,1
(1)

= 𝑆1,1
∗ . If not, a random number ξ is generated to compared with exp (−∆H /𝐾𝛽𝑇). If 

ξ ≤ exp (−∆H𝑁/𝑘𝑇),  𝑆1,1
(1)

= S1,1
∗  . Otherwise, 𝑆1,1

(1)
= S1,1

(0)

 

 
. In other word, the probability of the spin 

flipped is: 

 

𝑃(𝑆 → 𝑆∗) =  {
𝑒(−∆H /𝑘𝑇),   ∆H > 0 

1,          ∆H < 0
              (10) 

 

Then, 𝑆𝑘+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ can be find by calculate all the 𝑆𝑘,𝑖

(𝑖)
.  

∆𝐻 (𝑆𝑘+1,𝑖
∗ , S𝑘+1

(𝑖−1)
) = 𝐻 (S𝑘+1

1∗ ) − 𝐻 (S𝑘+1
(𝑖−1)

)          (11) 

One Monte Carlo step is completed when all N spins have been calculated. The averaging magnetization 

is then calculated as 

𝐻 = −𝐽 ∑ 𝑠𝑖𝑠𝑗

𝑁

<𝑖,𝑗>

+ 𝐵 ∑ 𝑠𝑛

𝑁

𝑛=1

                 (6) 
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M =
1

𝑁
∑𝑆𝑖

𝑁

𝑖=1

 

 

A MATLAB code which implements above algorithm is developed. Some of the simulation results are 

shown below. The N = 400*400. The period of the alternating magnetic field is set as 10000 MCS. After 

the generating the initial states, first running 5 periods to reduce the effect of the initial random states.   

 

Figure 2-13 Spin array domain configuration 

The spin array domain configuration has been shown above. The states of the spin have been to black and 

white in the lattice system. Each block corresponding to the twofold state of the spin in the system.  

 

 

Figure 2-14 Mean magnetization, M, versus external field when J = 0.7 
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Figure 2-15 applied magnetic field and simulated BN 

The figure 2-15 above shows a simulation result for the differentiation of the magnetization under applied 

magnetic field. The magnetization experienced discrete changes with respect to time is considered as the 

MBN. The profile of the simulated MBN is shown below. 

 
Figure 2-16  root mean square of simulated MBN 

 

MBN shows good promise in mechanical properties evaluation include stress. In order to study the effect 

of the strain on the magnetic domain in the simulation, the interspin interaction J is assigned with 

different values. As strain increases, the J becomes smaller. Consider when the strain is applied to the 

material, J is reduced since the magnetic domains are more separated. The result is from the simulation of 

400 by 400 spins. One period is simulated by 10000 MCS and the applied with sinusoid external 

magnetic field. The simulated MBN results have been shown below.  
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Figure 2-17 Simulated MBN with different interspin interaction assigned 

 

The results shown in the fig.2-17 are the averaging from 5 periods. From the results, we can see the trend 

obviously that MBN amplitude decrease as J increases. In order to compare and correlate the MBN and J, 

a plot showing root mean square (RMS) against J is displayed in following figures. The root mean square 

voltage is an informative parameter of MBN which represent the power of the MBN signal.   

 

Figure 2-18 RMS of the simulated MBN with different inter-spin interaction assigned 

 

    The result shows reasonable trend, RMS decreases as J increases. The experiment will be done in the 

future to have a better understand of relationship and improve the simulation. 
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Pinning such as dislocations, disorders, voids on the domain walls will affect the magnetic properties of 

the materials. The simulations with and without void have been studied. By assigning zero spins, we 

create two void areas in the simulation. The result is from the simulation of 400 by 400 spins applied with 

sinusoid external magnetic field. The simulated MBN results have been shown below.   

 

Figure 2-19 Simulated MBN profile with and without voids 

 

The results shown in the fig.2-19 are the averaging from 10 periods. As shown in the figure, the pinning 

introduced in the simulation result in higher value of the profile. 

 

In order to have a better understand on the simulation results, optimization method NSGA has been 

employed. NSGA is a non-dominated sorting-based multi-objective evolutionary algorithms to find the 

optimal solution. The rule of NSGA is shown in the following figures.  

 

 

Figure 2-20 NSGAII algorithm 

Pt/Qt are the parents/offspring of generation t. All elements in Pt and Qt compete with each other for non-

domination. Optimal-front is the set includes all the non-dominated elements. The elements in the 

optimal-front F1 (if ||F1|| ≤ ||Pt+1||) are selected into the next generation. This procedure repeats until ||F1|| 

+ ||F2|| + … + ||Fk|| ≥ ||Pt+1||. If ||F1|| + ||F2|| + … + ||Fk|| > ||Pt+1||, extra elements are rejected based on 

the crowding distance sorting.  
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To study the relationship between the peak value of the simulated MBN and the maximum energy change 

during the simulation, following optimization has been solved by NSGA: 

 

 Maximize:        𝒇𝟏 = 𝑴𝒂𝒙(𝒆𝒏𝒗𝒆𝒍𝒐𝒑𝒆(
d
𝟐𝑴

𝒅𝒕𝟐
)) 

                       𝒇𝟐 = 𝑴𝒂𝒙(
𝒅𝑬

𝒅𝒕
) 

 Subject to        J :[0  1.5]; 

h :[0  0.8];           

 No constraint 

 

The optimization is solved with 100 generations and each generation has 60 population. The probability 

of crossover of real variable is 0.9 and the probability of mutation of real variable is 0.5. The code is 

working to find the minimize, therefore, we are solving the minimize of the -𝒇𝟏 and -𝒇𝟐. The result is 

shown below: 

 

Figure 2-21 All the population of 100 generations 

To reduce the calculation time, the number of the spin is selected as 10 by 10. As shown in the figure, the 

points are clearly divided to two parts. The points in the left part have better value of f1 and the points in 

the right part have better value of f2. The green circled points are the Pareto front. From the plot, we can 

see the relationship between the peak value of MBN and the energy change in the simulation.  

 

 

2.3. Experiment setting and optimization 

 

As the flowchart shown in the figure 2-22, the coil wind around U-shape core will be used to excite low-

frequency alternating magnetic field and the pick-up coil putted in the center of two poles of core will be 

used to capture Barkhausen noise emitted by the pipe sample due to the discontinues movement of the 

domain wall. The signal picked up by the coil sensor will pass through a high-pass filter to filter out the 
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low frequency excitation signal and an amplifier circuit to amplify the weak Barkhausen noise signal to 

millivolt level.  

  

Figure 2-22 Flowchat of the experiment setting 

 

Mainly focusing on the study of the characters of pipeline, we are using the following two pipeline as 

our sample. And the corresponding information about the size of the pipelines have been shown in the 

figure 3. 

 

              Figure 2-23 Pipeline sample and size information 

 

The signal in figure 2-24 shows a smooth profile and nice shape after some adjustments in the position of 

the sensor and making the sensor core stick closely to the sample. 

Signal 
generator

Power 
amplifier

sensor

Amplifier and 
filter circuit

Data 
acquiring
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Fig. 5 new barkhausen noise measured 

 

2.3.1. MBN profile extraction 

We are using the root mean square(RMS) to get the profile of one peak of 

the Barkhausen noise. It is mainly because that Barkhausen signal is 

noise like signal, signal can fluctuate violently in local regain. By using 

RMS, we can extract more smooth profile and provide more global 

information. The figure 6 show below are the Barkhausen noise of pipeline 

with different diameters and their profile. The graph only half period of the 

signal for the reason that the Barkhausen signal is symmetric during one 

period. One peak is easy for the parameter extraction in the following part. 

 
(a)                                   (b)    

Figure 2-24 The profile of pipeline with small diameter(a) and with large diameter(b)(30hz)  

 To further get the parameters related to the profile which are 

peak value, peak position and peak width, we need to use find 

function in the MATLAB to check the maximum and minimum 

points and mark their values and position on the graph. For the half 

width value, we still cannot find an efficient way to get it directly, 

but we can get the number on graph by hand. And to make the 

profile looks more smooth, we use polynomial to fit the profile we 

get before.  
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(a)                                       (b) 
Figure 2-25 Parameters of Barkhausen noise profile 

 

2.3.2. Applied excitation field study 

Several studies in the literature show the use of different magnetic excitation frequencies, typically 

ranging from 0.05 to 125 Hz for the measurement of the MBN. Different frequency will have various 

effect on the Barkhausen noise we measured. A proper frequency will decrease the measure noise and 

increase the sensitivity of the measurement so that we can get more accuracy information from the signal 

we get.  

To compare the profile of the Barkhausen noise with different excitation in one graph, we should 

make some adjustments of the way we draw the graph. In the previous work, we draw the profile of 

Barkhausen noise versus time. It is not proper when the excitation frequency is a variable. So we choose 

the applied voltage as the x-axis which has the following relationship with the time as shown in the figure 

8. And when we just change the frequency, the maximum and minimum of the applied voltage will be the 

same, so that we can draw MBN profile versus applied voltage in the same scale. 

 

Figure 2-26  applied voltage change with time 
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The relationship between the profile of Barkhausen noise with their excitation frequency in different 

samples are shown in the figure 9 below. The trend in the graph is consistent with the paper of V. 

Moorthy and further proves the validity of our result. 

 

Figure 2-27 Barkhausen noise change with frequency 

 

We can get the following rule: The increasing frequency will increase the number of domain wall and 

increase the intensity of the Barkhausen noise. From the graph, we can find that the peak value of MBN 

profile increase from 20Hz to 40Hz in both large diameter pipeline and small diameter pipeline. At high 

frequency, the surface tends to undergo demagnetization faster than the subsurface of ferromagnetic test 

material because of the eddy current damping and reduction in magnetization range. From the graph, we 

can find that the second peak of the large diameter pipeline which is considered as the response of the 

hard region near the surface of sample disappear as the increase of the frequency. The graph shows 

behind also reveal some differences in the structure of two kind of pipeline.  

The applied voltage will also have influence on the strength of the magnetic field and further affect the 

saturation depth of the field into the samples. The voltage value shows on the graph is the V-peak of the 

applied voltage.  

 

Figure 2-28  Barkhausen noise change with applied voltage 

 The following rule can be gotten from the observation: 

a) When the applied voltage decrease, the peak value of the barkhausen noise will decrease and 

the peak position will move to higher voltage. 
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b) The small diameter pipeline have the relatively active movement of the domain wall than the 

large diameter pipeline for the reason than the peak value of the small diameter pipeline is 

always larger than large diameter ones in the same experiment setting which shows some 

difference between two materials. 

2.3.3. Magnetic field measurement 

To get the corresponding relationship between the realistic magnetic field the sample experienced 

and the timing when Magnetic Barkhausen Noise generated, we introduce one hall sensor which can 

measure the magnetic flux directly. To hold the small sensor, we design a simple PCB and connect the 

components to the circuit (figure 7). The chip with three pins is our linear hall-effective sensor SS39ET 

from Honeywell. With supplied voltage amplitude 5 V, the relationship of the output voltage and 

magnetic flux with the units gauss has been shown in figure below. The sensor can measure a wide range 

of magnetic flux desity that between -1000 gauss to 1000 gauss and with a high sensitivity 1.4 mv/gauss. 

Figure 2-29 design of the hall sensor circuit  

 

 

Figure 2-30 Transfer characteristics and the applied voltage vs. measured field by hall sensor 
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With the hall sensor, we can know the magnetic field between two poles directly. When we draw the 

magnetic field against time and applied voltage against time together (figure 3), we find that two signals 

are not in the same phase. There is a delay between the magnetic field measured between two poles and 

the voltage applied. And the measured field is not as smooth as the applied voltage signal. The figures 

above show draw applied voltage and the measured field with Barkhausen noise respectively. Barkhausen 

noise happens around the zero-crossing point of the measured field. This is consistent with our common 

sense that the maximal rate of change occurs at the zero-crossing point and the results from other papers.  

Figure 2-31 applied field and measured field vs. Barkhausen noise 

With the field measured by the hall sensor, we can have a consistent standard to draw the profile of 

Barkhausen noise with different frequency of the input signal together. Whereas, because of the noisy 

signal from hall sensor, it is difficult to have a smooth profile of the Barkhausen noise. Even though we 

can see a rough shape of the profile and relative height between different profiles, highly noisy profile 

overwhelms a lot of important information. It is important to pre-processing the signal. By using moving 

average with window size 50 we can get a relative smooth sin signal and the signal processed matches 

with the original signal(fig 2-32). 

 

 Figure 2-32   Barkhausen noise profile plot against measured field measured filed processed by moving average 
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With the processed signal, we can get smooth profiles. By comparing the barkhausen noise profile we get 

from moving average with the profile we get before. It is quite the same and preserves detail in the figure 

2-33.  

Figure 2-33 Barkhausen noise profile changes with processed measured field and Barkhausen noise profile changes 

with time 

 

B (magnetic flux density) describes the field felt by objects and will change with different permeability. 

With the formula H=B／μ0, we can calculate the magnetic strength which is the same when the hall 

sensor is close to the surface of the sample. 

Figure 2-34 Barkhausen noise profile plot against magnetic strength 

2.3.4. Depth information 

According to the formula of electromagnetic skin depth δ 

 

δ = 1/√πfσμ0μr 

The Barkhausen noise transmitted from different region of material will have different frequency. The 

high frequency content of MBN is mainly attributed to the near-surface magnetization. Low frequency 

components will contain information from volumes of material at greater depth. 

-30 -20 -10 0 10 20 30

measured field/gauss

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

Barkhausen noise profile changes with processed measured field

30hz

40hz

50hz

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

time/s

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

Barkhausen noise profile changes with time

30hz

40hz

50hz

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

H/(A/m)

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

Barkhausen noise profile changes with measured field

30hz

40hz

50hz



109 
 

To filter out the Barkhausen noise in different frequency band, we use one butterworth 

bandpass filter with parameters maximum passband attenuation -3dB and minimum stopband 

attenuation -35dB. The sample rate for the experiment is 200000 point/s, the maximal frequency 

of the signal should less than half of the sampling frequency which is 1000000 Hz. We divide the 

bandwidth of Barkhausen noise into 5 or 10 parts equally. The stop edges for the bandpass filter 

are lower bandpass edge minus 500hz and higher bandpass edge plus 500hz.       
Figure 2-35 frequency spectrum through bandpass filter(1-20khz) and MBN signal through bandpass filter(1-20khz) 

 

The figure 2-36 shows the profile of Barkhausen noise in different frequency range: 

It is obvious that the second peak shows when the frequency range increase. According to the results in 

previous paper, the green line with higher frequency show profile of Barkhausen noise in near-surface 

region. It is consisted with the results in previous study. 

Figure 2-36 MBN in different analyzing frequency range 

 

 

2.3.5. Extract parameters  

With the profile we get from previous step, we can extract parameters such as first peak peak-value and 

second peak peak-value. By using the center frequency as the frequency to calculate the skin depth, we 

can get a table about the relationship between analyzing frequency band with the depth. 
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Table 1 Relationship between analyzing frequency band with depth 

Analysing 

frequency/khz 

Center 

frequency/khz 

Depth/um Analysing 

frequency/khz 

Center 

Frequency/khz 

Depth/um 

1-10 5 283.6 50-60 55 85.51 

10-20 15 163.7 60-70 65 78.65 

20-30 25 126.8 70-80 75 73.22 

30-40 35 107.2 80-90 85 68.78 

40-50 45 94.53 90-100 95 65.06 

 

The following figures show the variation trend of the peak value change along depth. Even with different 

excitation frequency, the shape could be different. For each curve in one figure, they all follow the same 

trend. 

 

Figure 2-37 MBN signal peak vs. depth 

2.4. Sensor optimization 

Considering the sensitive, weak and noise-like properties of the Barkhausen Noise signal, a suitably 

efficient sensor is indispensable to achieve accurate measurement for the microstructure of material. One 

50 100 150 200 250 300

depth/um

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

10-3 first peak value vs. depth (small diameter pipe)

20hz

40hz

50 100 150 200 250 300

depth/um

0

0.5

1

1.5

2

2.5
B

a
rk

h
a

u
s
e

n
 n

o
is

e
/V

10-3 second peak value vs. depth (small diameter pipe)

20hz

40hz

50 100 150 200 250 300

depth/um

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

10-3 first peak value vs. depth (large diameter pipe)

20hz

40hz

50 100 150 200 250 300

depth/um

0.4

0.6

0.8

1

1.2

1.4

1.6

B
a

rk
h

a
u
s
e

n
 n

o
is

e
/V

10-3 second peak value vs. depth (large diameter pipe)

20hz

40hz



111 
 

of the most important part for the sensor design is the excitation part which is the core and excitation coil 

in our experiment. Previous work has investigated the relationship between the magnetic field with 

different single objectives like material of the core, the shape of core tips and distance between two poles. 

This kind of study can give us guidance when we are designing our experiment, but is still not enough 

when we have trade-off between two objectives. We introduce some advanced multi-objective algorithms 

such as NSGAⅡand NSGA Ⅲ as efficient tools to investigate the relationship between magnetic field at 

the center of two poles with different shape of core. To get a better spatial resolution, the minimal size of 

the core should also be satisfied. What is more, the sensor mainly be used to detect the aging of steel 

pipelines in industry whose diameters might vary from 150mm to 500mm. The cylinder like sample 

(pipeline) make it difficult to couple with the flat pole of core (there is gap between poles and samples) 

and it is a big challenge to design a sensor which is good for all different samples (gaps might vary with 

the diameter of sample pipeline) (figure 2-38). 

Figure 2-38  Ansys model and gaps between sample and core 

Acording to the previous discussion, two objectives which are important for the design of the sensor for a 

spacial sample. One is that we try to maximize the magnetic field at the center of two poles which is the 

position for the pick up coil to gain a relative strange signal. The second one is to minimize the overall 

effective area of the magnetic core to obtain a good spatial resolution (to get the information at small local 

area which is good for crack detection). What is more, I try to take the sample shape into consideration. 

To design a sensor which is good for both the worse situation, the pipeline sample with diameter 150mm 

(large gap between poles and sample), and the best situation, the flat sample (no gap). 

For the variables, we choose the following defined a,b,c as our variables to control the shape of the core: 

Figure 2-39  Definition for variables and objectives 
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To calculate the magnetic field at the center of two poles, I 

build the 3D model in the AnsysEM software. To cut down the 

simulation time it takes, the original model has been replaced by 

half and using one symmetric boundary to gain the same result. But 

it still takes almost one minute for each population. 

…One python code as an interface between MATLAB code and 

simulation software ANSYSEM can call ANSYSEM project and 

feed the population points into the variables to change the 

shape. of the core in model. And then the magnetic field value can 

be get from one txt file saved after simulation procedure. 

The following figure 2-41 shows the pareto fronts (any point in pareto front is not inferior than any other 

points in objective space) we get: 

Figure 2-40 Ansys model with flat sample and pipeline sample 

Figure 2-41 Pareto front get from NSGAⅢ 

By using the L2 norm decision making method with idea point as reference point and with different 

weight . We can finally find one point: 
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Table 2 Decision making with L2 norm with different weight 

Wight Effective 

area 

Magnetic 

field of 

pipeline 

Magnetic 

field of flat 

sample 

a b c 

(1,1,1) 876.60 -383.61 -537.21 14.10 17.6 21.49 

(1,2,2) 1634.14 -461.04 -691.05 21.89 20.04 37.74 

(1,3,3) 2377.17 -465.59 -831.19 22.65 23.48 55.91 

 

By slightly change the weight, we can get different combination of objectives. From the table show 

above, we can see the solution with weight (1,2,2) is preferred which has a reasonable size of the core and 

relatively bigger magnetic field for both samples. 

 

2.5. MBN grain size and carbon contents measurment 

2.5.1.  Material preparation 

The experiments are performed on various types of mild steels obtained commercially, include 1008, 

ASTM 36, 1018 and 1026, with different shapes. Steel 1008, ASTM 36 and 1018 are plates with the same 

thickness of 0.1875 inches. Steel 1026 is the pipeline with outside diameter of 6 inches and a wall 

thickness of 0.188 inches.  

To observe the microstructure on the surface of each sample, small pieces of the samples were cut and 

polished using silicon dioxide paste（0.5 μm）.The metallographic structure could be revealed by 

etching with the 4% Nital solution. Dark and bright regions represent the pearlite and the ferrite, 

respectively. The proportion of the dark region increases with the increase of the carbon content and has 

great influence on the MBN signal. Fig. 1 shows the microstructure observed under an optical microscope 

with the magnification of 2000X. The details of the chemical composition and microstructure are 

summarized in Table 3. 

 

Table 3 Carbon content and grain size of steel samples 

Samples Carbon Content (CC w%) Grain Size(GS) (d/ 𝛍𝐦) 

1008 0.04 39 

A36 0.12 11 

1018 0.19 10 

1026 0.25 15 
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(a)                                        (b) 

(c)                                   (d) 

Figure 2-42 Optical micrograph of (a) 1008 (b) ASTM 36 (c) 1018 (d) 1026 samples 

2.5.2.  Simulation setup 

In order to have a better understanding of the carbon contents’ effect on MBN. A simplified three-

dimensional Ising model which simulates the interacting magnetic spins with a changing external 

magnetic field is studied. To simulate Barkhausen noise with different carbon content, 3-D simulations 

have been performed on the spin lattice systems. Since more carbon content will result in a higher local 

coercive field [11], the spins within the region of interest are harder to change the status. The 'pinning' 

area is random selected and spins within the region are assigning with zero value. Since the relative 

atomic mass of iron is more than 4 times of carbon and each spin will affect 6 nearest neighbors, 1%, 3% 

5%, 6% of 'pinning' are simulated for carbon content 0.04 wt%, 0.12 wt%, 0.19 wt%, 0.25 wt%.  As 

shown in Fig. 2, an external field changes as a triangle wave with ∆B = 0.002 and 100 Monte Carlo 

Steps(MCS) per field step. To reduce the uncertainty, the simulation results are taking the average of 10 

periods of simulated MBN signal. 
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Figure 2-43 Simulated MBN with the external field 

2.5.3.  Experimental sensor 

Based on the original experiment setup, to keep the relative position of excitation core and pick-up coil 

consistently, we design a holder to integrate the excitation part and pick up part with 3D printer. Fig. 2-44 

shows the schematic and physical prototype for the holder. 

(a)                                            (b) 

Figure 2-44 The schematic and physical prototype for the holder 

 

 

 

Figure 2-45 Pickup coils with different turns 

To investigate the influence of pickup sensor, pickup coils with different number of turns (Fig. 2-45) has 

been introduced in the experiment. From the Fig. 2-44(b), the sensor and other parts of the experiment are 

flexibly connected for easy replacement. 

Flexible 

connection 

 

80 turns 200 turns 400 turns 
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MBN signals repeat every half period. To remove the white noise in the signal, an average of ten half-

periods of MBN signals have been taken as the signal to be processed. The profile of the MBN signal is 

extracted as a plot of average RMS (root-mean-square) (calculated with the adjustable window size of 

1/40 of the points per period) as a function of the magnetic field measured by hall sensor. In consideration 

of the random property of MBN, to get relative robust and reliable parameters, ten sets parameters 

obtained from a single measurement averaged and summarized as the parameters to be analyzed in the 

following steps. The frequency spectrum of the MBN signal has been determined from the Fast Fourier 

Transformation (FFT) of the time-domain signals using MATLAB. The profile of the intensity of the 

frequency response has been extracted by moving average with the window size of 1000. 

2.5.4. Results and discussion 

2.5.4.1. MBN signals for different of pick-up coils 

To investigate the influence of the different number of turns of pick-up coils to the MBN signal, three 

different coils (80 turns, 200 turns, 400 turns) have been applied to measure the MBN emission with the 

same excitation signal. Fig. 2-46(left) shows the normalized MBN profiles, which have been divided by 

the peak values of the original profiles. There is no obvious shift in the peak positions of profiles for 

signal detected with different pick-up coils. All peaks overlap to each other. Whereas, with the increase of 

the number of turns, the signal-to-noise ratio (SNR) has improved dramatically. The noise can be defined 

as the area below the minimal value of the MBN profile.   

 

Fig. 2-47(right) shows the normalized MBN frequency spectrum profile over bandwidth 0 to 100 kHz 

obtained from time-domain signals above. The frequency spectrum profile is used to show the intensity 

change along the bandwidth. Considering that the intensity changing with number of turns of pick-up 

coils, normalized profiles can put them into the same scale and make them comparable. For the same 

MBN signal, it is obvious that the sensor with the larger number of turns is more sensitive to the low 

frequency. The coil of 400 turns has higher intensity in bandwidth from 20 kHz to 60 kHz. The high-

intensity frequency response of coil with 200 turns shift to bandwidth from 60 kHz to 100 kHz. For the 

80-turn coil, the frequency response is almost flat over the whole bandwidth except some impulses related 

to noise. 

        

Figure 2-46   Normalized MBN profile and Normalized MBN frequency response profile 

3.1 Grain size effect on MBN frequency spectrum 
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Grain size as a significant microstructural property have important influence on the MBN signals. Hall-

Petch type relationship between the grain-size and the MBN power observed for polycrystalline iron was 

found. The relationship can be described as the formula MBN = 𝐶𝑔 ∙ 𝑑𝑔
−1/2

. Grain size have influence on 

the frequency spectrum of the MBN signal as well. The relationship between the length of the wall 

displacement between pinning obstacles and the local magnetic moment is described as following 

formula: 

𝛿�⃗⃗� = 𝛽 (𝑆 ∙ 𝛿𝑙 ) 

𝛽  is a coefficient related to the type of domain wall and atomic magnetic moment. 𝑆  is the face of moving 

Bloch wall. 𝛿𝑙  as the length between two pinning obstacles associated with microstructure morphology 

closely can be further expressed as 𝛿𝑙 = 𝑣 ∙ 𝛿𝑡. 𝑣  is the average wall velocity and 𝛿𝑡 is the time interval 

between two pinned states. And then frequency content can roughly be characterized by f=1/𝛿𝑡.  

With the decrease of the grain size, there are more pinning sets around grain boundaries. And this fact 

results in the short displacement length 𝛿𝑙  and further leads to the increase of the frequency content. Fig. 

2-47 shows the frequency spectrum profile of samples. Peak positions for the frequency spectral trends 

have been marked in the graph. Steel 1008 with large grain size 39 𝜇𝑚 has an obvious peak in the low 

frequency around 7.5 kHz. And then, the peak position of steel 1008 followed by the steel 1026, ASTM-

36 and steel 1018 with grain sizes of 15 𝜇𝑚, 11 𝜇𝑚 and 10 𝜇𝑚 respectively. The similarity of the MBN 

spectrum profiles for the sample 1018 and ASTM 36 reveal the similarity in their grain size and 

microstructure. 

  

Figure 2-47 MBN frequency response profiles of samples and plot of the MBN frequency response peak     position 

as a function of grain size 

2.5.4.2. Carbon content 

Profiles of MBN signal of samples 1008, ASTM-36 and 1018 in Fig. 2-48 show obvious slope changes in 

high magnetic field strength which can be taken as second peaks. For steel 1026, even though there is no 

sharp slope change from the profile, it can be explained by the reason that the second peak merged with 

the first one depending on the distribution of pinning strength of microstructural obstacles in response to a 

given range of magnetization which has been described in previous studies. For the property observed in 

the figure, two Gaussian curves have been used to fit two peaks in MBN profiles separately. The first 

peak in low magnetic field strength is related to the nucleation and annihilation of domain walls in grain 
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boundaries of ferrite and the second peak at higher amplitude position indicates the displacement of 

domain walls due to the second phase particles which are harder pearlites in samples . It is obvious that 

the shapes of profiles for different samples change slightly with the change of the relative position of two 

peaks. From (a) to (d) in Fig. 48, the gaps between two peaks (∆G) defined as the difference of mean 

values of two Gaussian distributions become smaller with the increase of the carbon content. A plot of 

parameter ∆G and carbon content for four samples is given in Fig. 49. Most of the experimental results 

collected by multiple measurement lie in the 95% prediction bounds suggests that reliable of the data. 

 

(a)                                       (b) 

   

                    (c)                                                (d) 

Figure 2-48 MBN profiles fitted with two Gaussian curves (a) 1008 steel (b) ASTM-36 steel (c) 1018 steel (d) 1026 

steel 
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Figure 2-49 A plot of the separation between two peaks as a function of carbon content 

2.6. MBN hardness measurement 

Other than those parameters extracted in time domain, it is also important to study the results from the 

frequency response of the MBN signal, which provide a wealth of information. S. Yamaura et al. derived a 

new parameter, P 60 /P 3, to study the effect of grain size of pure iron specimens on the Barkhausen noise, 

where P 60 and P 3 are the spectrum intensities at 60 kHz and at 3 kHz respectly. M. Vashista et al. showed 

that the frequency response of the pick-up coils would change with the number of turns of the coil. The peaks 

of frequency response move to the lower frequency with the increase of the number of turns of pick-up coil. In 

this section, the sample has been annealed and normalized to get different microstructures to investigate and 

verify the relationship between the MBN frequency response and grain size and hardness of samples in the 

experiment. For frequency response for different samples, in contrast to the description in the previous paper 

that the frequency response of a pick-up coil does not change significantly with the different microstructure of 

test material, as grain size decreases, the position of peaks of frequency profiles increases.  

2.6.1. Heat treatment of the steel 

Parallelepiped samples were prepared from various types of mild steels obtained commercially, which include 

1008, A36 and 1018 with different carbon contents of 0.04 wt%, 0.12 wt% and 0.19 wt% respectly. As Fig. 2-

50 showing, those steels using in the experiment whose carbon contents less than 0.83% are mainly consisted 

with ferrite and pearlite. In order to change the microstructure of steels obtained off-the-shelf and investigate 

the influence of heat treatment to the Barkhausen noise signals, each kind of steels were normlized and 

annealed by heating the samples above the Ac3 around 50 ◦F to 150 ◦F to austenitize the original grains. The 

carbon contents of the samples are from 0.04 wt% to 0.19 wt %, acorrding to the Fig. 1, the corresponding 

austenitize tempreture are from 1600 ◦F to 1650 ◦F. Considering all the samples, we set the temperature with 

1706 ◦F as show in the Fig. 2-51 (a) and Fig. 2-51 (b). The heat rate for the heat treatment also has influence 

on the austenitize temperature, the samples have been heated with a related slow ramp rate of 300 ◦F/ h to 

make sure a low austenitize temperature. To make the sample heated sufficiently, according to the thickness of 

the sample, the samples have been held in the temperature for one hour. The cooling rate, which is the only 

different between annealing process and normalizing process, is the most import procedure to control the grain 

size and grain phase of the steel. For annealing, the steels are cooled in the furnace with a relative slow rate of 

225 ◦F / h to around 800 ◦F. This process will lead to a coarse-grain structure of the steel. The grain size will 

became smaller with the increase of the cooling rate. For normalizing, the samples are cooling in the air which 

has a relave higher cooling rate and lead to fine-grain structure. The grain phase of the steel after annealing and 

normalizing are still ferrite and pearlite. Whereas, martensite will present when the cooling rate increase 
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further, such as cooling in water or oil, which is known as quenching.Each kind of steels were normlized to get 

samples 1008 N, A36 N and 1018 N and annealed to get the samples 1008 A, A36 A and 1008 A with the 

vacuum furnace. To make the samples fully saturated, all steels were cutted into small piecies with dimensions 

of 100mm × 30mm × 4.76mm. 

 

Figure 2-50  Iron carbon phase diagram 

 

(a) annealing                   (b) normalizing 

Figure 2-51 Heat treatment of the steel 

2.6.2. Vickers Hardness Test 

The Vickers hardness test method is very useful for testing on a wide type of materials, but test samples must 

be highly polished to enable measuring the size of the impressions. It consists of indenting the test material 

with a diamond indenter, in the form of a right pyramid with a square base and an angle of 136 degrees 

between opposite faces subjected to a load of 1 to 100 kgf. The full load is normally applied for 10 to 15 

seconds. After loading, when we move the indenter away and there is a small indent under microscope. By 

using screw micrometer, the diagonal length can be measured accordingly. 

The HV number is determined by the ratio F/A, where F is the force applied to the diamond in grams-force (gf) 

or kilograms-force (kgf) and A is the surface area of the resulting indentation in square micrometers 𝑚𝑚2 or 

square millimeters 𝜇𝑚2. A can be determined by the formula. 
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                                (1) 

                      (2) 

              (3) 

The F in equation 1 stands for the load force, which is set by yourself. The d is represented the 

average of two the diagonal line of the indent. Vickers hardness values are generally independent of the test 

force. The Fig. 2-52(a) shows the diagram for the Vickers Hardness test and the shape of the indent. And Fig. 

2-52 (b) shows the tester we are using.The micro-hardness of the samples are obtained with Vickers Hardness 

Tester with load 200gf . According to equation 1 and 3, we can calculate the Vickers Hardness for different 

samples. The tests have been conducted on every sample for five times, and the final hardness is obtained by 

taking average of results of five times. 

 

(a)                    (b) 
Figure 2-52 The diagram for Vickers Hardness Test and Vickers Hardness Tester 

2.6.3. Microstructure 

To observe the microstructure on the surface of each sample, small pieces of the samples were cut and polished 

with diamond paste (6 μm and 0.2 μm).The metallographic structure was revealed by etching with the 4% 

Nital solution. Bright regions in the majority of the picture represent the ferrite grains and the dark ones spread 

in between are pearlite grains, which can be taken as the second phase particles. Fig. 4 shows the 

microstructure observed under an optical microscope with the magnification of 1000X. With the graph 

obtained from the microscope and the scale bar marked on the bottom right corner of the picture, we can 

predict the area for the whole picture. The grain number can be counted from the picture and the average grain 

size for ferrite grain can be calculated. The grain size, grain shape, Vickers Hardness and second phase 

percentage drastically changed after heat treatment. From the Fig. 2-53, we can find that the grain size for 

annealed sample is larger than normalized one, which is consisted with the conclusion before. And the second 

phase (pearlite, dark particles) proportion will change a lot during heat treatment. The details of the chemical 

composition, heat treatment process and microstructure are summarized in Table 4. 
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(a) 1008                (b) 1008 annealed             (c) 1008 normalized 

 

(d) 1018                  (e) 1018 annealed                (f) 1018 normalized 

 

(g) A36                     (h) A36 annealed             (i) A36 normalized 

Figure 2-53 Microstructure of steel samples with magnification of 1000X 
Table 4  Carbon content, grain size, Vickers Hardness and heat treatment of steel samples 

Samples Carbon Content 

(CC wt%) 

Grain Size  

(GS d/um) 

Vickers 

Hardness 

Heat treatment 

1008 0.04 32 110.21 Without heat 

treatment A36 0.12 11 172.19 

1018 0.19 10 185.33 

1008 A  40 95.06 Annealing: 

1706◦F 1hr, 

4hrs cool to 800◦F 
A36 A  22.5 116.33 

1018 A  25 118.81 

1008 N  34 99.71 Normalizing: 

1700◦F to 1750◦F, 1hr 

Cool in air 
A36 N  16.5 120.7 

1018 N  22 133.43 

 

 

2.6.4. Grain size effect on MBN frequency spectrum 

Grain size as a significant microstructural property has an important influence on the MBN signals. A Hall-

Petch type relationship between the grain-size and the MBN power observed for polycrystalline iron was 
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found. The relationship can be described as the formula 𝑀𝐵𝑁 = 𝐶𝑔 ∙ 𝑑𝑔
−1/2

[1]. Grain size also has an influence 

on the frequency spectrum of the MBN signal. The relationship between the length of the wall displacement 

between pinning obstacles and the local magnetic moment is described as the following formula: 

𝛿�⃗⃗� = 𝛽 (𝑆 ∙ 𝛿𝑙 ) 

𝛽  is a coefficient related to the type of domain wall and atomic magnetic moment. 𝑆  is the face of moving 

Bloch wall. δl is the length between two pinning obstacles associated with microstructure morphology closely, 

which can be further expressed as δ𝑙   = 𝑣 ∙ 𝛿𝑡. 𝑣  is the average wall velocity and δt is the time interval between 

two pinned states. Frequency content can roughly be characterized by f=1/ 𝛿𝑡. 

To simulate MBN with different Grain size, 2-D simulations have been performed on the spin lattice systems. 

The results have been shown below. 

 

 

Figure 2-54 Simulated MBN profile of different grain sizes 

 

Figure 2-55 Simulated MBN frequency profiles of different grain sizes 

With the decrease of the grain size, there are more pinning sets around grain boundaries and this fact results in 

the short displacement length 𝛿𝑙 , which further leads to the increase of the frequency content. Fig. 2-56 shows 

the fitted frequency spectrum profile of samples with excitation voltage of 700 mv generated by signal 

generator. 
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Figure 2-56 Fitted MBN frequency profiles of different samples 
The lines in same color stand for the same samples with different heat treatment processes. Steel 1008 groups 

with large grain sizes from 32 μm to 40 μm have obvious sharp peaks in the low frequency regions. Whereas, 

the peak positions of steel ASTM-36 and 1018 with fine grains are moving to the high frequency ranges. From 

Table 4 and Fig. 2-53, the grain size for each kinds of samples with different heat treatment processes are 

following the same trend where samples after normalizing are larger than samples without heat treatment and 

smaller than samples after annealing. When we take a look at lines with the same color, the peak positions are 

increasing with the decrease of the grain size from annealed samples to samples without heat treatment. 

 

Figure 2-57 MBN frequency response peak position as a function of grain size 

 

Figure 2-58 MBN frequency response peak position as a function of grain size 
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The relationship between grain size and main frequency content has been plotted in the Fig. 8. Each point in 

Fig. 2-57 is obtained by taking the average of results from multiple measurements to get reliable parameters. 

The relationship between grain size and frequency peak position are perfect fitted by the power function 

𝐹𝑝𝑝 = 1.0022 ∙ 106 ∙ 𝐺𝑠−1.349 

(Fpp stands for frequency peak position of MBN signal and Gs is grain size of the sample). The sensitivity of 

the parameter, frequency peak position, increases when the grain size of samples decreases. For those samples 

with fine grain, small changes in grain size will result in a large shift of the frequency peak, whereas those 

samples with coarse grain (larger than 15 μm), the frequency peak position has a good linearity with grain size. 

Fig. 7 shows the linear relationship between frequency peak position and samples with grain size larger than 

15 μm. 

2.6.5. Excitation signal effect on MBN frequency spectrum 

It has been showed that the MBN time-domain profile will show two peaks for steels with two phase of 

particles when applied magnetic field is high enough. The first peak in low magnetic field strength is related to 

the nucleation and annihilation of domain walls in grain boundaries of ferrite and the second peak at higher 

amplitude position indicates the displacement of domain walls due to the second phase particles. The intensity 

of the second peak will increase as the applied magnetic field increases. The excitation signal also has 

influence on the frequency spectrum. 

Previous works shows the results with excitation signal of 700 mV. When increasing the excitation signal from 

signal generator to 1.2 V, the frequency peak of samples normalized A36, annealed 1018 and normalized 1018 

have been shifted to a higher frequency from the original position (Fig.2-57). Frequency profiles in Fig. 2-58 

are from the same sample with different excitation signal amplitudes. They show two peaks for both profiles 

and the second peak intensity increases a lot with the increase of excitation signal. It is because that when the 

excitation voltage increases, the MBN signal that comes from the second phase particles, which are harder 

pearlites for low carbon samples, has been increased. Pearlite is a two-phased, lamellar structure composed of 

alternating layers of ferrite (88 wt%) and cementite (12 wt%). It usually has more pins and is difficult for 

magnetization. As a result, the frequency response for pearlite is in high frequency regions and this is 

consistent with previous works. This fact results in the increase of the second peak of the frequency profile for 

samples with large proportions of second phase particles. It can be further confirmed by the fact that samples 

normalized A36, annealed 1018 and normalized 1018 all have large proportions of second phase particles. The 

second peaks of the frequency spectrum are in the region from 40 kHz to 50 kHz and this overlaps with the 

frequency region of samples 1018 and A36. This explains why samples 1018 and A36 do not show a small 

frequency peak shift when excitation signal increases. 

 

Figure 2-59 MBN frequency response peak position and grain size for each samples 
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(a) 1018 annealed 

 

(b) 1018 normalized 

. 

(c) A36 normalized 
Figure 2-60 Fitted MBN frequency response peak profile for samples with different excitation signal 
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Figure 2-61 MBN frequency response peak position as a function of grain size (high amplitude excitation signal) 

2.6.6. Predict hardness with parameter frequency peak position 

The grain size has a strong effect on the mechanical behavior of the materials. For mild steel, the grain 

refinement can enhance the hardness. This grain-size dependence is described by the Hall-Petch relation. 

H = H0 + K • Gs
−1/2

 

Where 𝐻0 is the hardness of an indefinitely large, error-prone grain, and K is the Hall-Petch constant, which 

describes the grain boundary structure. Gs is the average grain size and H is the hardness of different kind of 

steel. The relationship between hardness measured by Vickers Hardness tester and grain size has been plotted 

in Fig. 2-60. The parameter 𝐻0 and K can be predicted from Fig. 2-60, which are 10.237 and 531.32 respectly 

for mild steel. 

 

Figure 2-62 Hardness as a function of grain size 

It is easy to obtain a relationship between hardness H and parameter frequency peak position Fpp. The 

relationship can be described as following equation: 

H = H0 + K • (Fpp/1E + 06)
0.371

 

Fig. 2-63 shows values for prodicted hardness and hardness measured by Vickers Hardness Tester. The results 

show good accuracy for prediction and the errors are less than 10%. 
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Figure 2-63 Predicted hardness and hardness measured by Vickers Hardness Tester 
 

Table 5  Predicted hardness and corresponding error of steel samples 

Samples Vickers Hardness Predicted hardness Error 

1008 110.21 105.99 -3.8% 

A36 172.19 179.92 4.5% 

1018 185.33 181.98 -1.8% 

1008 A 95.06 97.08 2.1% 

A36 A 116.33 116.27 -0.05% 

1018 A 118.81 117.68 -0.9% 

1008 N 99.71 102.72 3.0% 

A36 N 120.7 130.82 8.3% 

1018 N 133.43 121.05 -9.3% 

 

 

2.7. Summary 

MBN is a powerful tool to study and characterize microstructural properties of low carbon steels. 

The experimental work shows that the peaks of frequency responses of the MBN signals move to higher 

frequency with the decrease of grain size, which results from the decrease of the length between two 

obstacles with the decrease of grain size. In the experiment, the shape of profiles of MBN signals is 

changed with carbon content. By extracting parameter with two fitted Gaussian curves, a linear 

relationship has been revealed between gaps and carbon content of samples.  

Sensor optimization has been introduced in the present study. Three coils with the different number 

of turns have been compared for sensitivity. The result shows that pick-up coils with a larger number of 

turns have higher SNR and are sensitive to lower frequency response. 

 

 

 


